
- •Матрицы, основные понятия.
- •Алгебра матриц. Сложение матриц.
- •Умножение матрицы на скаляр
- •Умножение матриц
- •Обратная матрица
- •Определитель матрицы.
- •Вычисление определителей второго и третьего порядка.↑↑
- •Теорема разложения.
- •Свойства определителей.
- •Свойства определителей:
- •Обратная матрица.
- •Ранг матрицы. Определение ранга матрицы
- •Вычисление ранга матрицы с помощью миноров
- •Вычисление ранга матрицы с помощью элементарных преобразований
- •Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Матричная форма
- •Пример системы линейных уравнений
- •Методы решения
- •Матричный способ решения систем линейных уравнений.
- •Формулы Крамера.
- •Метод Гаусса.
- •[Править]Условие совместности
- •Системы m линейных уравнений с n переменными, базисные допустимые решения.
- •Системы линейных однородных уравнений, свойства их решений.
- •Линейные операции над векторами.
- •Простейшие задачи аналитической геометрии (расстояние между точками, деление отрезка в заданном отношении).
- •Общее уравнение прямой на плоскости, его частные случаи.
- •Угловой коэффициент прямой.
- •Уравнение прямой, проходящей через две заданные точки.
- •Уравнение прямой, проходящей через заданную точку в заданном направлении.
- •Уравнение прямой с угловым коэффициентом.
- •Уравнение прямой в отрезках на осях.
- •Угол между прямыми на плоскости, условия перпендикулярности и параллельности прямых.
- •Расстояние от точки до прямой на плоскости.
Матричный способ решения систем линейных уравнений.
Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных. Метод удобен для решения систем невысокого порядка. Метод основан на применении свойств умножения матриц.
Пусть
дана система уравнений:
Составим
матрицы: A =
;
B =
;
X =
.
Систему уравнений можно записать: A*X = B.
Сделаем следующее преобразование: A-1*A*X = A-1*B,
т.к. А-1*А = Е, то Е*Х = А-1*В Х = А-1*В Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.
Формулы Крамера.
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А
= det (ai j)
и n
вспомогательных определителей i (i=
),
которые получаются из определителя заменой
i-го столбца столбцом свободных членов.
Формулы Крамера имеют вид:
x i = i ( i = ). (5.4)
Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:
x i = i / .
Если главный определитель системы и все вспомогательные определители i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Метод Гаусса.
Пусть исходная система выглядит следующим образом
Матрица
называется
основной матрицей системы,
—
столбцом свободных членов.
Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):
При
этом будем считать, что базисный
минор (ненулевой минор максимального
порядка) основной матрицы находится в
верхнем левом углу, то есть в него входят
только коэффициенты при переменных
[3].
Тогда переменные называются главными переменными. Все остальные называются свободными.
Если
хотя бы одно число
,
где
,
то рассматриваемая система несовместна,
т.е. у неё нет ни одного решения.
Пусть
для
любых
.
Перенесём
свободные переменные за знаки равенств
и поделим каждое из уравнений системы
на свой коэффициент при самом левом
(
,
где
—
номер строки):
,
где
Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.
|
Следствия: 1: Если в совместной системе все переменные главные, то такая система является определённой. 2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной. |
|