
- •Матрицы, основные понятия.
- •Алгебра матриц. Сложение матриц.
- •Умножение матрицы на скаляр
- •Умножение матриц
- •Обратная матрица
- •Определитель матрицы.
- •Вычисление определителей второго и третьего порядка.↑↑
- •Теорема разложения.
- •Свойства определителей.
- •Свойства определителей:
- •Обратная матрица.
- •Ранг матрицы. Определение ранга матрицы
- •Вычисление ранга матрицы с помощью миноров
- •Вычисление ранга матрицы с помощью элементарных преобразований
- •Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Матричная форма
- •Пример системы линейных уравнений
- •Методы решения
- •Матричный способ решения систем линейных уравнений.
- •Формулы Крамера.
- •Метод Гаусса.
- •[Править]Условие совместности
- •Системы m линейных уравнений с n переменными, базисные допустимые решения.
- •Системы линейных однородных уравнений, свойства их решений.
- •Линейные операции над векторами.
- •Простейшие задачи аналитической геометрии (расстояние между точками, деление отрезка в заданном отношении).
- •Общее уравнение прямой на плоскости, его частные случаи.
- •Угловой коэффициент прямой.
- •Уравнение прямой, проходящей через две заданные точки.
- •Уравнение прямой, проходящей через заданную точку в заданном направлении.
- •Уравнение прямой с угловым коэффициентом.
- •Уравнение прямой в отрезках на осях.
- •Угол между прямыми на плоскости, условия перпендикулярности и параллельности прямых.
- •Расстояние от точки до прямой на плоскости.
Вычисление ранга матрицы с помощью элементарных преобразований
Элементарными называются следующие преобразования матрицы:
1) перестановка двух любых строк (или столбцов),
2) умножение строки (или столбца) на отличное от нуля число,
3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.
Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.
Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A B.
Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,
.
При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.
Пример 2 Найти ранг матрицы
А=
и привести ее к каноническому виду.
Решение. Из второй строки вычтем первую и переставим эти строки:
.
Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:
;
из третьей строки вычтем первую; получим матрицу
В
=
,
которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:
.
Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
Система
линейных
алгебраических уравнений с
неизвестными —
это система уравнений вида
Здесь
—
неизвестные, которые надо определить.
Коэффициенты системы
и
её свободные члены
предполагаются
известными. Индексы коэффициента
системы
обозначают номера уравнения
и
неизвестного
,
при котором стоит этот коэффициент.
Система
называется однородной,
если все её свободные члены равны
нулю,
,
иначе — неоднородной.
Система называется квадратной, если число уравнений равно числу неизвестных.
Решение
системы уравнений —
совокупность
чисел
,
таких что подстановка каждого
вместо
в
систему обращает все её уравнения в
тождества.
Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения. Совместная система может иметь одно или более решений.
Решения
и
совместной
системы называются различными,
если нарушается хотя бы одно из равенств:
Совместная система называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.