
- •Матрицы, основные понятия.
- •Алгебра матриц. Сложение матриц.
- •Умножение матрицы на скаляр
- •Умножение матриц
- •Обратная матрица
- •Определитель матрицы.
- •Вычисление определителей второго и третьего порядка.↑↑
- •Теорема разложения.
- •Свойства определителей.
- •Свойства определителей:
- •Обратная матрица.
- •Ранг матрицы. Определение ранга матрицы
- •Вычисление ранга матрицы с помощью миноров
- •Вычисление ранга матрицы с помощью элементарных преобразований
- •Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.
- •Матричная форма
- •Пример системы линейных уравнений
- •Методы решения
- •Матричный способ решения систем линейных уравнений.
- •Формулы Крамера.
- •Метод Гаусса.
- •[Править]Условие совместности
- •Системы m линейных уравнений с n переменными, базисные допустимые решения.
- •Системы линейных однородных уравнений, свойства их решений.
- •Линейные операции над векторами.
- •Простейшие задачи аналитической геометрии (расстояние между точками, деление отрезка в заданном отношении).
- •Общее уравнение прямой на плоскости, его частные случаи.
- •Угловой коэффициент прямой.
- •Уравнение прямой, проходящей через две заданные точки.
- •Уравнение прямой, проходящей через заданную точку в заданном направлении.
- •Уравнение прямой с угловым коэффициентом.
- •Уравнение прямой в отрезках на осях.
- •Угол между прямыми на плоскости, условия перпендикулярности и параллельности прямых.
- •Расстояние от точки до прямой на плоскости.
Уравнение прямой с угловым коэффициентом.
Прямоугольная система координат позволяет задавать различные линии на плоскости их уравнениями. Уравнением линии на плоскости в прямоугольной системе координат хОу называется уравнение f(х,у)=0, которому удовлетворяют координаты каждой точки данной линии и не удовлетворяют координаты любой точки плоскости, не лежащей на этой линии.
Пусть
прямая l не параллельна оси Оу (рис.1).
Обозначим точку пересечения прямой l с
осью Оу буквой В(О;в), а угол между
положительным направлением оси Ох и
прямой l обозначим угол, отсчитываемый
от оси Ох против часовой стрелки (
),
называется углом наклона прямой l к оси
Ох.
Выведем уравнение прямой l. Пусть М(х,у) – произвольная точка прямой l с текущими координатами х,у. Из прямоугольного треугольника ВМN (рис.1) имеем:
(1)
Отсюда y-в=xtgφ, или у=xtgφ+в и окончательно
y=kx+в (2)
где k=tgφ - Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой. Уравнение (2) называется уравнением прямой с угловым коэффициентом. Число в – это величина отрезка, отсекаемого прямой на оси ординат.
Уравнение прямой в отрезках на осях.
(3)
где a - величина отрезка, отсекаемого прямой на оси Ox; b - величина отрезка, отсекаемого прямой на оси Oy.
Угол между прямыми на плоскости, условия перпендикулярности и параллельности прямых.
Если уравнения прямой заданы в общем виде
A1x + B1y + C1 = 0,
A2x + B2y + C2 = 0, (6)
угол между ними определяется по формуле
(7)
4. Условия параллельности двух прямых:
а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:
k1 = k2. (8)
б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.
(9)
5. Условия перпендикулярности двух прямых:
а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.
(10)
Расстояние от точки до прямой на плоскости.
Расстояние от точки до прямой — равно длине перпендикуляра, опущенного из точки на прямую.
Если задано уравнение прямой Ax + By + C = 0, то расстояние от точки M(Mx, My) до прямой можно найти, используя следующую формулу
d = |
|A·Mx + B·My+ C| |
√(A2 + B2) |