
- •Введение
- •Раздел I общая фармакология
- •Лекция 1 фармакокинетика. Всасывание и пути введения лекарственных средств
- •Всасывание лекарственных средств
- •Биодоступность лекарственных средств
- •2. Сублингвальный (рассасывание под языком) и трансбуккальный (рассасывание за щекой) пути
- •3. Ректальный путь
- •Парентеральные пути введения
- •1. Введение под кожу
- •2. Введение в мышцы
- •3. Введение в вену
- •4. Введение в артерии
- •5. Внутрисердечный путь
- •6. Внутрикостный путь
- •7. Субарахноидальный и эпидуральный пути
- •8. Ингаляционный путь
- •9. Накожный путь
- •Гематоэнцефалический и гематоофтальмический барьеры
- •Депонирование лекарственных средств
- •Лекция 3 элиминация лекарственных средств
- •Реакции метаболической трансформации Окисление
- •Конъюгация
- •Биотрансформация и эффекты лекарственных средств при энзимопатиях
- •Экскреция лекарственных средств
- •Взаимодействие лекарственных средств с циторецепторами
- •Виды действия лекарственных средств Местное и резорбтивное действие
- •Прямое и косвенное действие
- •Обратимое и необратимое действие
- •Главное и побочное действие
- •Избирательное (элективное) действие
- •Привыкание (толерантность)
- •Фармакокинетические механизмы привыкания
- •Фармакодинамические механизмы привыкания
- •Пристрастие
- •Синдром отдачи
- •Синдром отмены
- •Сенсибилизация
- •Эффекты при совместном приеме лекарственных средств
- •Синергизм
- •Антагонизм
- •Синерго-антагонизм
- •Зависимость действия лекарственных средств от дозы
- •Терапевтические дозы:
- •Токсические дозы:
- •Летальные дозы:
- •Виды фармакотерапии
- •Механизм действия
- •Препараты местных анестетиков
- •Применение местных анестетиков Терминальная (поверхностная, концевая) анестезия
- •Проводниковая анестезия
- •Спинномозговая анестезия
- •Резорбтивное действие местных анестетиков Влияние на нервную систему
- •Влияние на сердечно-сосудистую систему и гладкие мышцы
- •Показания к применению
- •Раздражающие средства растительного происхождения
- •Строение и функции синапсов
- •Адренергические синапсы
- •Адренорецепторы
- •Лекция 10 адреномиметики
- •Связь химической структуры адреномиметиков - производных фенилалкиламина с фармакологическим действием
- •Местное действие
- •Резорбтивное действие Влияние на цнс
- •Влияние на сердце
- •Влияние на артериальное давление
- •Влияние на органы с гладкой мускулатурой
- •Влияние на метаболизм
- •Применение резорбтивных эффектов
- •Избирательные -адреномиметики прямого действия
- •Избирательные β2-адреномиметики
- •Местное действие
- •Резорбтивное действие Влияние на цнс
- •Влияние на сердечно-сосудистую систему, органы с гладкой мускулатурой и метаболизм
- •Применение резорбтивных эффектов
- •Лекция 11
- •Лекция 12
- •Фармакологические эффекты и применение Антиангинальное действие
- •Гипотензивное действие
- •Побочное действие неизбирательных β-адреноблокаторов
- •Препараты группы β -адреноблокаторов
- •Кардиоселективные β1-адреноблокаторы
- •Холинорецепторы
- •Лекция 15 антихолинэстеразные средства
- •Третичные амины
- •Четвертичные амины
- •Необратимые блокаторы холинэстеразы
- •Местное действие на глаз
- •Резорбтивное действие
- •Применение резорбтивных эффектов обратимых блокаторов холинэстеразы Заболевания нервной системы
- •Миастения
- •Атония гладких мышц
- •Декураризация
- •Острое отравление фос
- •Неотложная помощь при интоксикации фос:
- •Местное действие на глаз
- •Резорбтивное действие Влияние на цнс
- •Синтетические м-холиноблокаторы
- •Применение м-холиноблокаторов Потенцированный наркоз
- •Вестибулярные расстройства
- •Аритмии
- •Хроническая обструктивная болезнь легких
- •Язвенная болезнь желудка и двенадцатиперстной кишки
- •Спазм гладкой мускулатуры
- •Острое отравление атропином
- •Лекция 17 ганглиоблокаторы
- •Эффекты блокады симпатических ганглиев Ортостатическая гипотензия
- •Лекция 18 миорелаксанты (курареподобные средства)
- •Деполяризующие миорелаксанты (лептокураре)
- •Применение миорелаксантов
- •Осложнения при применении миорелаксантов
- •Газовый наркоз
- •Лекция 20 неингаляционные наркозные средства
- •Лекция 21 спирт этиловый
- •Местное действие спирта этилового
- •Рефлекторное действие спирта этилового
- •Резорбтивное действие спирта этилового
- •Токсикокинетика спирта этилового
- •Влияние спирта этилового на цнс
- •Характеристика снотворных средств Производные бензодиазепина
- •Производные циклопирролона и имидазопиридина
- •Производные алифатического ряда
- •Отравление снотворными средствами Острое отравление
- •Хроническое отравление
- •Лекция 23 противоэпилептические средства
- •Принципы лечения эпилепсии
- •Характеристика противоэпилептических средств Лекарственные средства, эффективные при тонико-клонических и парциальных припадках
- •Лекарственные средства, эффективные при абсансах
- •Лекарственные средства с широким противоэпилептическим спектром
- •Новые противоэпилептические средства
- •Лекция 24 фармакотерапия дегенеративных заболеваний цнс
- •Противопаркинсонические средства
- •Дофаминомиметики
- •Антагонисты nmda-рецепторов глутаминовой кислоты
- •Центральные м-холиноблокаторы
- •Лекарственные средства для лечения болезни альцгеймера
- •Нейропротекторы
- •Вазодилататоры
- •Противовоспалительные средства
- •Антиамилоидные стратегии терапии
- •Лекарственные средства для лечения бокового амиотрофического склероза
- •Лекция 25 лекарственные средства для лечения мигрени
- •Лечение мигрени
- •Алкалоиды спорыньи
- •Селективные агонисты рецепторов серотонина
- •Лекция 26 седативные средства
- •Бромиды
- •Растительные седативные средства
- •Лекция 27 наркотические (опиоидные) анальгетики
- •Опиоидные рецепторы
- •Влияние на цнс Кора больших полушарий
- •Гипоталамус и железы внутренней секреции
- •Средний мозг
- •Продолговатый мозг Дыхательный центр
- •Центр блуждающего нерва
- •Рвотный центр
- •Сосудодвигательный центр
- •Спинной мозг
- •Влияние на сердечно-сосудистую систему
- •Влияние на органы с гладкой мускулатурой
- •Острое отравление морфином
- •Хроническое отравление наркотическими анальгетиками
- •Лекция 28 ненаркотические анальгетики (нестероидные противовоспалительные средства)
- •Ограничение биоэнергетики воспаления
- •Влияние на пролиферативные процессы
- •Иммунотропное действие
- •Жаропонижающее действие
- •Особенности действия и фармакокинетики препаратов
- •Лекция 29 психотропные средства. Нейролептики
- •1. Нейролептики (греч. Neuron - нерв, lepticos — способный воспринимать), или антипсихотические средства
- •Химическое строение
- •1. Производные фенотиазина
- •2. Производные тиоксантена
- •3. Производные бутирофенона
- •Психоседативное действие
- •Влияние на вегетативные функции Гипотермическое действие
- •Противорвотное действие
- •Ортостатическая гипотензия
- •Влияние на сердечную деятельность
- •Изменение секреции гормонов
- •Блокада м-холинорецепторов
- •Влияние на моторику
- •3. Производные тиоксантена
- •4. Производное бутирофенона
- •Антипсихотические нейролептики — дофаминоблокаторы
- •1. Производные фенотиазина с пиперазиновым радикалом
- •2. Производное бутирофенона
- •3. Производные замещенного бензамида сулыпирид
- •Атипичные нейролептики
- •Лекция 30 транквилизаторы (анксиолитики)
- •Психоседативное влияние
- •Активирующее влияние
- •Нейровегетотропное действие
- •Особенности действия, применение, фармакокинетика и побочные эффекты
- •Лекция 31 антидепрессанты
- •Избирательные блокаторы нейронального захвата серотонина
- •Ингибиторы мао
- •Атипичные антидепрессанты
- •Лекция 32 нормотимические средства (соли лития)
- •Влияние на нейрофизиологические процессы Повышение бодрствования мозга
- •Повышение змоционально-мотивационного реагирования
- •Оживление движений
- •Влияние на психофизиологические процессы
- •Препараты психомоторных стимуляторов
- •Производные фенилалкиламина
- •Производные ксантина
- •Психостимуляторы-адаптогены
- •Эффекты, механизм действия и применение
- •Лекция 34 ноотропные средства. Актопротекторы ноотропные средства
- •Механизм действия
- •Ноотропные средства, имеющие структуру гамк, оказывают противогипоксический эффект, модифицируя биохимические реакции гамк-шунта.
- •Применение и особенности действия препаратов
- •Камфора
- •Этимизол
- •Фармакодинамика сердечных гликозидов в терапевтических дозах Влияние на сердце
- •Положительное инотропное (кардиотоническое, систолическое) действие
- •Влияние на электролитный обмен миокарда
- •Отрицательное дромотропное действие
- •Влияние на гемодинамику
- •Мочегонное действие
- •Фармакокинетика
- •Неполярные липофильные сердечные гликозиды
- •Сердечные гликозиды промежуточной полярности и липофильности
- •Полярные водорастворимые сердечные гликозиды
- •Принципы назначения
- •Внекардиальные симптомы
- •Диспепсические нарушения:
- •Лечение отравления
- •Нестероидные кардиотонические средства
- •Патогенез аритмий
- •Нарушение импульсообразования
- •Круговая волна возбуждения
- •Ia класс — блокаторы натриевых каналов, удлиняющие эрп
- •Ib класс — блокаторы натриевых каналов, укорачивающие эрп
- •Лекция 39 противоаритмические средства (препараты II — V классов)
- •II класс - β-адреноблокаторы
- •Средства с мембраностабилизирующим действием:
- •Средства с внутренней адреномиметической активностью:
- •Кардиоселективные средства:
- •III класс - блокаторы калиевых каналов, удлиняющие эрп
- •В нисходящем колене петли нефрона реабсорбируется вода по осмотическому градиенту в гиперосмотический мозговой слой почки. Первичная моча становится гиперосмотической.
- •В реабсорбции ионов в дистальных извитых канальцах участвуют гормоны:
- •Типы транспорта веществ в почках
- •1. Пассивная диффузия
- •2. Активная диффузия в базальной мембране нефроцитов
- •Классификация По характеру мочегонного эффекта:
- •По локализации мочегонного действия в нефроне:
- •По силе мочегонного действия
- •По скорости наступления и продолжительности мочегонного действия:
- •По влиянию на кислотно-основное равновесие крови:
- •По влиянию на экскрецию ионов калия:
- •По влиянию на экскрецию ионов кальция:
- •Диуретики, повышающие фильтрацию в клубочках Диметилксантины
- •Диуретики. Тормозящие реабсорбцию в проксимальных извитых канальцах Ингибиторы карбоангидразы
- •Диуретики, тормозящие реабсорбцию в петле нефрона Осмотические диуретики
- •Лекция 41 мочегонные средства (сильнодействующие диуретики, тиазиды, тиазидоподобные и калийсберегающие диуретики) диуретики, тормозящие реабсорбцию в петле нефрона
- •Диуретики, тормозящие реабсорбцию в дистальных извитых канальцах
- •Антагонисты альдостерона
- •Блокаторы натриевых каналов
- •Лекция 42 вазопрессин
- •Физиология вазопрессина
- •Заболевания, вызванные нарушением функций вазопрессина
- •Лекция 43 противоподагрические средства
- •Лекция 44 антиангиналыные средства (нитраты, молсидомин, блокаторы кальциевых каналов)
- •Нитраты
- •Молсидомин
- •Классификация
- •Агонисты имидазолиновых i1-рецепторов
- •Эффекты иапф, связанные с подавлением активности плазменной рас:
- •Эффекты иапф, связанные с подавлением активности тканевой рас:
- •Блокаторы рецепторов ангиотензина II
- •Характеристика липопротеинов
- •Статины
- •Секвестранты желчных кислот
- •Кислота никотиновая
- •Фибраты
- •Блокаторы рецепторов на тромбоцитах
- •Лекция 50 антикоагулянты
- •Антикоагулянты прямого действия (ингибиторы тромбина)
- •Антикоагулянты непрямого действия
- •Лекция 51 лекарственные средства, влияющие на фибринолиз стимуляторы фибринолиза (тромболитические средства)
- •Фибриннеспецифические тромболитические средства
- •Активаторы плазминогена
- •Фибринспецифические тромболитические средства — активаторы плазминогена
- •Ингибиторы фибринолиза
- •Лекция 52 стимуляторы эритропоэза для лечения макроцитарной анемии (витамин b12, кислота фолиевая) витамин b12
- •Фармакокинетика
- •Механизм действия, применение, побочные эффекты
- •Кислота фолиевая
- •Фармакокинетика
- •Механизм действия, применение
- •Терапия препаратами железа
- •Токсическое действие препаратов железа
- •Гранулоцитарно-макрофагальный колониестимулирующий фактор (gm-csf)
- •Факторы роста миелоидных клеток
- •Лекция 54 фармакологическая несовместимость
- •Фармакокинетическая несовместимость
- •Несовместимость при всасывании
- •1. Изменение рН среды, из которой происходит всасывание:
- •2. Изменение интенсивности перистальтики кишечника:
- •3. Образование нерастворимых, не всасывающихся комплексов лекарственных средств:
- •4. Изменение функции гликопротеина р26:
- •5. Нарушение энтерогепатической циркуляции лекарственных средств:
- •2. Изменение проницаемости клеточных мембран:
- •3. Расширение области распространения лекарственных средств в органе.
- •Несовместимость при биотрансформации
- •Несовместимость при экскреции
- •Фармакодинамическая несовместимость
- •Несовместимость вследствие синергизма
- •1. Превращение терапевтических эффектов в токсические, превышение предела работоспособности клеток и органов:
- •2. Извращение фармакологических эффектов:
- •3. Усиление побочных эффектов лекарственных средств:
- •Несовместимость вследствие физиологического антагонизма лекарственных средств:
Лекция 42 вазопрессин
Пептиды, подобные гормону вазопрессину, идентифицируются иммунореактивным методом в нейронах животных всех ступеней эволюции, начиная от пресноводной гидры. Они выделены из организма млекопитающих (аргинин-вазопрессин, липрессин, фенипрессин), других позвоночных (вазотоцин) и беспозвоночных животных (аргинин-конопрессин, лизин-конопрессин). Гены, кодирующие эти пептиды, возникли в эволюции более 700 млн лет тому назад. После выхода животных на сушу вазопрессин приобрел исключительное значение для сохранения воды в организме.
Вазопрессин выделяется задней долей гипофиза, когда недостаточное поступление воды создает опасность роста осмотического давления крови, а также при гиповолемии и артериальной гипотензии. У земноводных мишенью для вазопрессина являются кожа и мочевой пузырь, у других позвоночных животных гормон действует на собирательные трубочки почек. Повышая проницаемость клеточных мембран, он облегчает ток воды в коже, мочевом пузыре и собирательных трубочках в сторону более высокого осмотического давления межклеточной жидкости.
Вазопрессин (лат. vas — сосуд, pressare — давить) в высоких концентрациях является сильным сосудосуживающим веществом. Как медиатор ЦНС он регулирует секрецию АКТГ, температуру тела, познавательную деятельность, память, функции сердечно-сосудистой системы. Освобождая фактор Виллебранда и фактор VIII (антигемофильный глобулин) из эндотелия, стимулирует агрегацию тромбоцитов и свертывание крови.
Вазопрессин представляет собой циклический пептид из 9 аминокислот — цистеин-тирозин-фенилаланин-глутамин (NH2) -аспарагин (NH2) -цистеин-пролин-аргинин-глицин (NH2). Остатки цистеина в положениях 1 и 6 соединены дисульфидным мостиком. Это создает циклическую структуру. Вазопрессин человека и большинства млекопитающих содержит в положении 8 аргинин. Аргинин-вазопрессин идентичен антидиуретическому гормону (АДГ).
Циклический нонапептид окситоцин химически незначительно отличается от вазопрессина. Его строение — (изолейцин3-лейцин8) -аргинин-вазопрессин. Окситоцин, активируя специфические рецепторы на миоэпителиальных клетках молочных желез и гладких мышцах матки, повышает выделение молока и сокращение матки. Большинство агонистов и антагонистов вазопрессина в высоких дозах взаимодействуют с рецепторами окситоцина.
Синтезированы многочисленные аналоги вазопрессина. У дезаминированного производного с замененным оптическим изомером аргинина — десмопрессина (1-дезамино-8-D-аргинин-вазопрессин) соотношение антидиуретического и сосудосуживающего эффектов в 3000 раз больше, чем у вазопрессина. Созданы также мощные вазоконстрикторы (терлипрессин) и стимуляторы секреции АКТГ.
Антагонисты вазопрессина пептидной и непептидной структуры оказывают лечебное действие при застойной сердечной недостаточности, артериальной гипертензии, избыточной секреции АДГ и гипонатриемии.
Физиология вазопрессина
Вазопрессин образуется в перикарионе нейронов супраоптического и паравентрикулярного ядер гипоталамуса. Предшественник вазопрессина состоит из 168 аминокислот (сигнальный пептид-вазопрессин-нейрофизин-гликопептид). В секреторных гранулах комплекса Гольджи предшественник подвергается протеолизу при участии эндопептидазы, экзопептидазы, монооксигеназы и лиазы.
Гранулы вазопрессина быстро, в течение 30 мин, транспортируются по длинным аксонам в заднюю долю гипофиза. Часть вазопрессина по воротной системе кровообращения достигает передней доли гипофиза, чтобы регулировать секрецию АКТГ.
Стимулы для секреции вазопрессина — повышение осмотического давления крови до 280 мосм/кг, гиповолемия и артериальная гипотензия. Меньшее значение имеют боль, тошнота и гипоксия. Рост осмотического давления всего на 2 % увеличивает концентрацию вазопрессина в крови в 2 — 3 раза. При осмотическом давлении крови выше 290 мосм/кг концентрация вазопрессина достигает уровня 5 пикомоль (пико — 10-12). В этих условиях гиперосмотичность можно снижать только приемом воды, а не задержкой ее в организме. Концентрация вазопрессина в крови выше в ночное время, поэтому ночью выделяется меньший объем мочи.
Чувствительностью к изменениям осмотического давления крови обладают многие структуры головного мозга. Они получили название осморецептпорный комплекс. Нейроны супраоптического и паравентрикулярного ядер гипоталамуса содержат вакуоли, заполненные жидкостью с эталонным осмотическим давлением. При дегидратации вакуоли сморщиваются, что создает сигнал для секреции вазопрессина.
Вазопрессин выделяется также в ответ на снижение объема циркулирующей крови (ОЦК) и артериальную гипотензию (кровотечение, низкий уровень электролитов, прием мочегонных и антигипертензивных средств, цирроз печени с асцитом, недостаточность надпочечников). Зависимость между секрецией вазопрессина и гемодинамическими показателями экспоненциальная. Уменьшение ОЦК и АД на 5 — 10% лишь незначительно стимулирует секрецию вазопрессина. При уменьшении ОЦК и АД на 20 — 30 % выделение гормона возрастает в 20 — 30 раз. Вызываемое вазопрессином сужение сосудов препятствует развитию кардиоваскулярного коллапса.
На изменение ОЦК реагируют барорецепторы левого предсердия, левого желудочка и легочных вен. При падении АД возбуждаются барорецепторы каротидного синуса и дуги аорты. Импульсы передаются по афферентным ветвям языкоглоточного и блуждающего нервов в ядро солитарного тракта продолговатого мозга, затем через систему норадренергических нейронов — в супраоптическое и паравентрикулярное ядра гипоталамуса.
При хронической сердечной недостаточности избыточную секрецию вазопрессина вызывают циркулирующие ангиотензин II и адреналин. Задержка в организме ионов натрия в результате повышения уровня ангиотензина II и альдостерона, а также нарушения почечной гемодинамики со снижением скорости клубочковой фильтрации могут приводить к гиперосмолярности плазмы, что служит основным стимулом для секреции вазопрессина.
Вазопрессин способствует прогрессированию хронической сердечной недостаточности, так как увеличивает пред- и постнагрузку в результате гиперволемии и периферической вазоконстрикции.
Секрецию вазопрессина повышают также ацетилхолин (через Н-холинорецепторы), гистамин (Н1-рецепторы), дофамин (D1- и D2-рецепторы), глутаминовая и аспарагиновая кислоты, холецистокинин, нейропептид Y, субстанция Р, вазоактивный интестинальный пептид, простагландины, лекарственные средства — адреналин, морфин в большой дозе, трициклические антидепрессанты, винкристин, циклофосфан. Ингибиторы секреции — натрийуретические пептиды, ГАМК, динорфин (через к-опиоидные рецепторы), буторфанол, спирт этиловый, дифенин, фторфеназин, галоперидол, глюкокортикоиды. Карбамазепин и хлорпропамид усиливают антидиуретический эффект вазопрессина в собирательных трубочках.
Вазопрессин активирует специфические рецепторы V1 (V1a, V1b) и V2:
V1a-рецепторы — наиболее распространенный тип, находятся в гладких мышцах сосудов, кишечника и мочевого пузыря, миометрии, адипоцитах, тромбоцитах, печени, почках, селезенке, семенниках, ЦНС;
V1b-рецепторы — обнаружены только в передней доле гипофиза;
V2-рецепторы — расположены в главных клетках собирательных трубочек.
В настоящее время все рецепторы вазопрессина клонированы. Они содержат 35 — 60 % гомологичных аминокислот, состоят из 7 пронизывающих мембрану доменов, соединенных 3 внеклеточными и 3 внутриклеточными петлями. Молекулярная масса рецепторов — 40 — 50 кДа. V2-рецепторы проявляют намного большую чувствительность к вазопрессину (АДГ) по сравнению с V1 -рецепторами.
V1-рецепторы ассоциированы посредством G-белков с ферментами группы фосфолипаз. Фосфолипаза С катализирует гидролиз мембранного фосфатидилинозитолдифосфата. В этой реакции образуются два вторичных мессенджера — инозитолтрифосфат (освобождает ионы кальция) и диацилглицерол (активатор протеинкиназы C). Фосфолипаза D участвует в продукции фосфатидной кислоты — предшественника диацилглицерола. Фосфолипаза А2, отщепляя от фосфолипидов арахидоновую кислоту, способствует синтезу простагландинов, тромбоксанов и лейкотриенов. Таким образом, V1-рецепторы вызывают спазм сосудов, гликогенолиз, агрегацию тромбоцитов, секрецию АКТГ, усиливают моторику кишечника, при участии протоонкогенов повышают образование фактора роста гладких мышц сосудов.
V2-рецепторы, активируя через GS-белки аденилатциклазу, увеличивают синтез цАМФ. В свою очередь, цАМФ фосфорилирует протеинкиназу A и при ее участии другие белки. Фосфорилированные белки повышают миграцию белков-аквапоринов (каналы для воды) в апикальную мембрану собирательных трубочек, а также препятствуют эндоцитозу аквапоринов в цитоплазму. V2-рецепторы стимулируют реабсорбцию мочевины, расширяют сосуды, освобождая окись азота (NO) из эндотелия.
Оба типа рецепторов вазопрессина находятся в почках. V1-рецепторы вызывают сокращение мезангиальных клеток почечных клубочков, спазм выносящей артериолы и прямых сосудов, повышают синтез простагландина (ПГ) Е2 интерстициальными клетками мозгового слоя. ПГЕ2, ингибируя аденилатциклазу, ослабляет антидиуретический эффект V2-рецепторов. Это не имеет физиологического значения, так как вазопрессин активирует V2-рецепторы в концентрациях, значительно меньших, чем требуются для действия на V1-рецепторы. Нестероидные противовоспалительные средства, особенно индометацин, усиливают антидиуретическое действие вазопрессина, блокируя синтез ПГЕ2 в почках.
При нормальном осмотическом давлении крови концентрация вазопрессина минимальная, собирательные трубочки непроницаемы для воды и мочевины. При ограниченном поступлении воды в организм растет осмотическое давление крови, повышаются секреция вазопрессина и реабсорбция воды в собирательных трубочках. Вода всасывается из гипоосмотической мочи собирательных трубочек в гиперосмотический мозговой слой почек. Литий вызывает полиурию, ослабляя активирующее влияние V2-рецепторов на синтез цАМФ.