
- •Методы обработки пзп
- •Метод виброударных колебании
- •Тепловые методы
- •Газовые мун
- •Виды пластовой энергии. Режим разработки нефтяных и газовых залежей
- •Гидродинамические методы
- •Задачи, решаемые при гидроразрыве
- •Контроль за качеством подземных вод
- •Факторы, влияющие на нефтеотдачу
- •Оценка экономического эффекта
- •Какую роль играют капиллярные процессы…..
Какую роль играют капиллярные процессы…..
Поровое пространство нефтесодержащих пород представляет собой огромное скопление капиллярных каналов, в которых движутся несмешивающиеся жидкости.
Если среда гидрофильна, в области водонефтяного контакта давление, развиваемое менисками, способствует возникновению процессов капиллярного пропитывания и перераспределения жидкостей. Это связано с неоднородностью пор по размерам. Капиллярное давление, развиваемое в каналах небольшого сечения, больше, чем в крупных порах. В результате этого на водонефтяном контакте возникают процессы противоточной капиллярной пропитки – вода по мелким порам проникает в нефтяную часть пласта, по крупным порам нефть вытесняется в водоносную часть. Интенсивность этого процесса зависит от свойств пластовой системы, а также от соотношения внешних и капиллярных сил. Когда внешние силы велики (т.е. когда перепад давления в пласте, под действием которого нефть вытесняется водой, достаточно высокий), фронт может передвигаться настолько быстро, что вследствие гистерезисных явлений в гидрофильном в статических условиях пласте наступающие углы смачивания становятся близкими или больше 90°. При этом процессы капиллярного впитывания на фронте вытеснения затухают или исчезают совсем. Однако в большинстве случаев (при закачке поверхностных пресных вод в пласт) эти процессы на фронте вытеснения нефти водой проявляются в той или иной степени, так как реальные скорости продвижения водонефтяного контакта редко превышают 0.5 - 1 м/сут.
Кроме упомянутых форм проявления, капиллярные силы влияют на процессы диспергирования и коалесценции нефти и воды в пористой среде, на строение тонких слоев воды (подкладок) между твердым телом и углеводородной жидкостью и т.д.
В гидрофобных пластах, где мениски в каналах противодействуют вытеснению нефти водой, капиллярные силы вредны, так как нефтеотдача пластов под их влиянием уменьшается. Поэтому лучший результат можно получить, если нефть вытесняется водой с низкими значениями межфазного натяжения при повышенных градиентах давлений.
Естественные коллекторы нефти обладают неоднородностью физических свойств пород одновременно по площади залегания и в вертикальном направлении, характеризующейся случайным законом распределения ее параметров. В результате местной неоднородности пород образуется неровный (рваный) водонефтяной контакт и появляются в различные моменты времени зоны и небольшие участки, обойденные фронтом воды. Нефтеотдача участков, заводняющихся под действием капиллярных сил, как правило, низка, так как нефть при этом не вытесняется из пористой среды сплошным фронтом вследствие неоднородности размера пор и сравнительно небольшого давления, развиваемого менисками в средних и крупных капиллярах, по сравнению с давлением мениска в мелких порах. Поэтому нефтенасыщенные участки, прилегающие к водонефтяному контакту, вначале пронизываются водой, проникающей в пласт по мелким и средним породам под действием капиллярных сил, что способствует быстрому формированию в этой зоне водонефтяной смеси с потерей нефтяной фазы.
Системы транспортировки и закачки СО2
Схема 1
Бескомпрессорная перекачка применяется при незначительной протяженности трубопровода. СО2 находится в газообразном виде. Трубопровод рассчитывается таким образом, чтобы в процессе движения исключается возможность выпадение конденсата. Давление начальное ниже упругости паров.
Схема 2
Компрессорная перекачка. Применяется в тех случаях, когда давление поступающего от источника продукта недостаточно для осуществления бескомпрессорной перекачки. При протяженном трубопроводе целесообразно строительство промежуточной компрессорной станции.
Схема 3
Компрессорная перекачка с предварительным охлаждением. СО2 вначале сжимается в компрессорах и переводится в новое термодинамическое состояние – в область сверхкритической температуры и давления, т.е. Тнасыщения > Ткритической, р нас> р критической. Затем осуществляется охлаждение и конденсация транспортируемой среды в теплообменном аппарате, в результате чего СО2 переводится в зону жидкого состояния. Аппарат воздушного охлаждения применимы в условиях, когда температура окружающего воздуха не превышает 25 0С. Использовать можно, кроме Средней Азии. Охлажденный и полностью сконденсировавшийся СО2 подается в трубопровод Транспорт на всем протяжении осуществляется в жидком состоянии. При транспорте СО2 в жидком состоянии давление на всасывающей линии промежуточных насосных станций составит 5-7 МПа. От источника СО2 поступает в жидком состоянии при Тнас < Ткрит., Ржид. > Рнас.
Схема 4
Безнасосная перекачка жидкого СО2. Перепад давления в системе в зимнее время по сравнению с летним повышается на 1.5- 2 МПа, что увеличивает подачу СО2 в зимнее время на 30-50 % по сравнению с летним.
Схема 5
Насосная перекачка жидкого СО2. Эту схему целесообразно осуществлять в 2 вариантах.
1. С предварительным охлаждением
2. Без него
2.Простая схема – без охлаждения применяется в том случае, если температура поступающего от источника жидкого СО2 достаточно низкая, давление на приеме насоса невысокое, углекислый газ подается либо непосредственно, или после дросселирования.
Если газ имеет высокую температуру, а насосы допускают на приеме лишь небольшое давление, то следует использовать вариант с охлаждением. На практике СО2 от источника может поступать из трубопровода в двухфазном состоянии.
Делать выбор охлаждение или нагревание следует в зависимости температуры грунта в годовом разрезе.