- •2. Основные характеристики метода анализа и методики: правильность, воспроизводимость, предел обнаружения, диапазон определяемой концентрации.
- •3. Взаимодействие электромагнитного излучения с веществом, общая характеристика и классификация спектроскопических методов анализа.
- •7. Методы идентификации и количественного определения веществ в ик-спектрометрии.
- •8.Сущность явления люминесценции. Классификация методов люминесценции.9. Фотолюминесценция.
- •10.Нефелометрический метод анализа.
- •13. Атомно-абсорбционная спектрометрия (сущность метода, принципиальная схема, количественное определение компонента, область применения).
- •14.Методы атомной спектроскопии: аас и аэс (сравнительный анализ, область применения).
- •15. Атомно-эмиссионная спектрометрия.
- •Идентификация и количественный анализ
- •16. Метод пламенной фотометрии.
- •17. Типы атомизаторов и их роль в атомно-абсорбционной спектрофотометрии и в приборах атомно-эмиссионной спект
- •18. Применение гравиметрических методов анализа для контроля объектов ос.
- •19. Применение титриметрических методов анализа для контроля объектов ос.
- •20.Хроматография (сущность метода, классификация, качественный и количественный анализ, область применения).
- •21. Применение газохроматографических методов анализа для контроля объектов ос.
- •24. Общая характеристика электрохимических методов анализа.
- •25. Потенциометрия (сущность метода, прямая и косвенная потенциометрия, область применения).
- •26. Ионометрия (сущность метода, область применения). 27. Основные характеристики ионоселективных электродов и электродов сравнения.
- •28. Вольтамперометрические методы анализа (сущность метода, достоинства и недостатки).
- •30. Вольтамперометрия (амперометрическое титрование и инверсионная вольтамперометрия).
- •29. Классическая полярография (качественный и количественный анализ).
- •31.Классификация загрязнителей атмосферного воздуха (по природе компонентов).
- •32. Приборы газового анализа, классификация.
- •33. Газоанализаторы (определение, типы, принципы работы).
- •34. Сигнализаторы (определение, назначение, типы, принцип действия).
- •35. Особенности анализа атмосферного воздуха.
- •36. Измерение концентрации вредных веществ индикаторными трубками.
- •37. Газоопределители химические гх-м (назначение, применение).
- •38, Автоматический анализ воздушной среды производственных помещений и атмосферного воздуха.
- •39. Методы анализа состава выхлопных газов автотранспорта.
- •40. Методы определения органических растворителей (бензола, ацетона и т.Д.) в воздухе рабочей зоны.
- •41. Методы определения оксидов азота в промышленных выбросах.
- •42. Методы определения диоксида серы в промышленных выбросах.
- •43.Основные показатели качества воды.
- •44. Суммарные показатели качества воды; методы их определения.
- •45. Методы определения общего содержания азота в водном объекте.
- •46.Взвешенные вещества в поверхностных водах; метод определения, единицы измерения.
- •47. Сущность бпк; виды бпк; метод определения.
- •48. Хпк; сущность понятия; метод определения.
- •49. Электропроводность как показатель качества воды.
- •50. Кислотность и щелочность воды; методы определения.
- •51. Органолептические показатели качества воды, краткая их характеристика.
- •52. Источники и причины теплового загрязнения водоемов и последствия его воздействия.
- •53. РН как важнейший показатель качества воды; методы определения.
- •54. Нефтепродукты при анализе воды; что понимают под нефтепродуктами, их влияние на гидросферу; методы определения.
- •55. Жесткость воды, ее виды, способы устранения, методы определения.
- •57. Источники загрязнения поверхностных вод нитратами, методы их определения.
- •58. Основные показатели качества почв. Источники загрязнения почв.
- •59. Подготовка почвы к анализу. Водные, солевые и кислотные вытяжки почв.
- •60. Физическое состояние загрязняющих веществ в объектах ос, единицы их измерения.
- •Часть 2(мониторинг ос)
- •1. Основные термины и определения, цели и задачи мониторинга окружающей среды. Основные этапы построения системы мониторинга ос.
- •2. Универсальная схема информационной системы регулирования качеством ос. Роль мониторинга ос в системе регулирования качеством природной среды. Классификация систем мониторинга окружающей среды.
- •3. Краткая характеристика основных видов мониторинга (биоэкологический мониторинг, геосистемный мониторинг, биосферный мониторинг, экологический мониторинг).
- •4. Глобальная система мониторинга окружающей среды. Международные программы мос. Понятие приоритетности наблюдений в системе гсмос.
- •5. Национальная система мониторинга окружающей среды (нсмос) – основные принципы функционирования. Структура и организация нсмос.
- •7. Принципы организации информационно-аналитической системы нсмос.
- •8. Локальный мониторинг (лм) окружающей среды в рб. Основные нормативные документы и их краткое содержание, объекты наблюдения в системе лм в рб.
- •9. Основные требования типовой инструкции «Порядок организации лм на отдельном предприятии, в организации, учреждении»; сопроводительные документы.
- •11. Организация и ведение лм сточных вод и почв на предприятиях.
- •12. Мониторинг атмосферы. Качество атмосферного воздуха. Состояние атмосферы в рб. Основные источники загрязнения.
- •13. Основные источники загрязнений и принципы организации наблюдений за уровнем загрязнения атмосферы.
- •14. Способ определения перечня веществ, подлежащих контролю. Понятие «основные» и «специфические» показатели. Программы и сроки наблюдений за атмосферным воздухом.
- •19. Качество природных вод. Особенности природных вод в рб. Организация и ведение мониторинга гидросферы.
- •21. Основные программы наблюдений, построение пунктов наблюдений, принципы составления плана отбора проб, пробоотборники
- •Техника безопасности при отборе проб
- •22. Организация и ведение мониторинга почв. Типы почв в рб. Особенности почв, как объекта мониторинга.
- •23. Принципы и требования к отбору и хранению проб почв; используемые пробоотборники.
- •25. Нормирование качества окружающей природной среды. Краткая характеристика основных групп нормативов качества.
- •1.Экологические.2.Санитарно-гигиенические.3.Производственно хозяйственные («научно-технические нормативы воздействия»). 4.Комплексные.
- •26. Нормирование качества атмосферного воздуха. Воздуха рабочей зоны.
- •27. Нормирование качества воды в зависимости от типа водоема. Понятие «лимитирующий показатель вредности» и их виды.
- •28. Особенности нормирования качества почв. Основные показатели вредности.
- •29. Нормирование воздействия на окружающую природную среду (производственно-хозяйственные нормативы). Основные термины и определения.
- •30. Основные статистические показатели.
- •31. Оценка состояния атмосферы. Основные группы оценок.
- •32. Методы прогнозирования состояния окружающей среды.
55. Жесткость воды, ее виды, способы устранения, методы определения.
Жесткость -это совокупность свойств воды,обусловленных наличием в ней многозарядных катионов,прежде всего катионов Са2+ и Mg2+ Различают общую,временную и постоянную.Общая=гидрокарбонатная(врем)+некарбонатная(постоян).Гидрокарбонатная вызвана присутсвием в воде гидрокарбонатов Са и Mg,некарбонатн.-наличием водорастворимых сульфатов,хлоридов,силикатов,нитратов и гидрофосфатов этих Ме.Количественно общая жесткостьвыражается суммарным числом миллимолей эквивалентов ионов Са2+ и Mg2+,содержащихся в 1л воды(моль экв/л).
В естественных условиях ионы кальция, магния поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и других процессов растворения и хим выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.
Гидрокарбонатная жесткость легко устраняется кипячением воды, и поэтому ее называют временной жесткостью: гидрокарбонаты кальция и магния при кипячении разрушаются, а продукты их распада (карбонаты кальция и магния) оседают на стенках сосуда в виде накипи Са(НС03)2 → СаС03↓ + С02↑ + Н20,
Mg(HC03)2→MgC03↓ + C02↑ + Н20.
Для устранения гидрокарбонатной жесткости используется также метод известкования
Са(НС03)2 +Са(ОН)2 → 2СаС03↓ + 2Н20,
Mg(HC03)2 +Са(ОН)2 → Mg(OH)2↓ + 2CaC03↓+ 2Н20„
Постоянную жесткость устранить кипячением не удается. В этом случае для удаления ионов Са2+ и Mg2+ в воду добавляют соответствующие реагенты, например, карбонат или фосфат натрия. При этом будут протекать реакции:
СаС12 +Na2C03 →СаС03↓ + 2NaCl,
ЗСаС12 + Na3PO4→ Са3(Р04)2↓ + 6NaCl.
В настоящее время для устранения жесткости воды широко применяют ионообменные смолы - иониты, с помощью которых можно осуществить полное обессоливание воды.
Катионы металлов связываются с помощью катионов, а анионы задерживаются анионитами: H2[Kat] + Са2+ = Ca[Kat] + 2Н+ ,
[Аn](ОН)2 + SO42- = [An]S04 + 20Н ,
2Н+ + 20Н- = 2Н20 .
Жесткость воды колеблется в широких пределах. Вода с общей жесткостью менее 2 ммоль экв/л считается мягкой, от 2 до 10 - средней жесткости, более 10-жесткой. Гидрокарбонатная жесткость составляет до 70-80% от общей жесткости.
Высокая жесткость ухудшает органолептические свойства воды. Вода с жесткостью свыше 10 ммоль экв/л имеет горьковатый вкус и оказывает действие на органы пищеварения, оказывает влияние на почки, способствует появлению дерматитов. В жесткой воде плохо развариваются мясо и овощи. Жесткая вода не дает пены с мылом, так как содержащиеся в мыле растворимые натриевые соли жирных кислот переходят в нерастворимые кальциевые соли тех же кислот. На стенках паровых котлов при кипячении жесткой воды образуется накипь, которая затрудняет нагревание воды, вызывает увеличение расхода топлива, ускоряет изнашивание котлов. Для хозяйственных и промышленных целей рекомендуется мягкая вода.
Для определения жесткости воды используют трилонометрический метод. Определение суммарного содержания ионов кальция и магния основано на способности трилона Б образовывать с этими ионами прочные комплексные соединения в щелочной среде.
56. Методы определения содержания растворенного кислорода как важнейшего показателя строения водной системы.Растворенный кислород находится в прир. воде в виде молекул О2. На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают конц-цию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:1)процесс абсорбции кислорода из атмосферы;2)выделение кислорода водной растительностью в процессе фотосинтеза,3)поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.
Абсорбция кислорода из атмосферы происходит на пов-ти водн. объекта. Скорость этого процесса повышается с понижением t, с повышением p и понижением минерализации. Аэрация - обогащение глубинных слоев воды кислородом - происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.
Выделение кислорода в результате фотосинтеза происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном).
Процесс фотосинтеза протекает тем сильнее, чем выше t воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (Р, N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).
К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (Дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fе2+, Мn2+, N0-2, NH4+, CH4, H2S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению.
В поверхностных водах содержание растворенного кислорода варьирует в широких пределах -от 0 до 14 мг/дм3 - и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2,5 мг/дм3 растворенного кислорода.
Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/дм3. Понижение его до 2 мг/дм3 вызывает массовую гибель (замор) рыбы.Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания, называется степенью насыщения кислородом. Эта величина зависит от температуры воды, атмосферного давления и солености. В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе,отобранной до 12 часов дня, не должно быть ниже 4 мг/дм3 в любой период года;, для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм в зимний период (при ледоставе) и 6 мг/дм3 - в летний. Определяют амперометрическим и титриметрическим (ОВТ).
