
- •Теория алгоритмов. Вводные положения. Теория алгоритмов- раздел математической логики, в котором изучаются теоретические возможности эффективных процедур вычисления (алгоритмов) и их приложения.
- •Интуитивное (наивное) понятие алгоритма как основное первичное понятие математики.
- •Основные требования к алгоритмам.
- •Основная терминология теории алгоритмов.
- •Основные теоремы теории алгоритмов.
- •Параметры алгоритма.
- •Основная гипотеза теории алгоритмов.
- •Алгоритмические (формальные математические) модели.
- •Блок-схемы алгоритмов.
- •Машина Тьюринга. Машина Тьюринга т – название, закрепившееся за вычислительными абстрактными машинами некоторого точно охарактеризованного типа.
- •1) Пусть последовательность k0k2kzимеет видq0a2a1a4q1a1qza4a2(очевидно, что последовательность команд следующая:q0a2q1a4 dп,q1a1qza2dЛ).
- •Формальное определение машины Тьюринга.
- •Основной тезис Тьюринга.
- •Нормальные алгорифмы (алгоритмы).
- •Рекурсивные функции.
- •Примитивно-рекурсивные функции.
- •Оператор минимизации (- орератор).
- •Основной тезис Черча.
- •Алгоритмически неразрешимые проблемы.
Теория алгоритмов. Вводные положения. Теория алгоритмов- раздел математической логики, в котором изучаются теоретические возможности эффективных процедур вычисления (алгоритмов) и их приложения.
Основное понятие этой теории – алгоритм – в интуитивном (наивном) понимании существует в математике довольно давно, а точные математические понятия, которые в том или ином смысле формализуют интуитивное понятие алгоритма, предложены только в середине 30-х годов 20-го века. Необходимость такой формализации была обусловлена как вопросами обоснования математики, так и вопросами доказательства алгоритмической разрешимости и неразрешимости тех или иных задач. Очевидно, что в математике доказываемый объект должен быть точно определен.
В настоящее время теорию алгоритмов делят на дескриптивную (абстрактную) и метрическую (количественную). Первая исследует алгоритмы с точки зрения устанавливаемого ими соответствия между исходными данными и результатами; к ней относятся, в частности, проблемы построения алгоритма, обладающего теми или иными свойствами, - алгоритмические (массовые) проблемы (т.е. нахождение единого метода решения бесконечной серии однотипных единичных задач). Вторая исследует алгоритмы с точки зрения сложности как самих алгоритмов, так и задаваемых ими вычислений, т.е. процессов последовательного преобразования конструктивных объектов. Важно подчеркнуть, что как сложность алгоритмов, так и сложность вычислений могут определяться различными способами. Разработка методов оценки сложности алгоритмов и вычислений имеет важное теоретическое и практическое значение, а сам поиск теоретических моделей алгоритмов происходит в трех направлениях, которые и определяют три основных класса этих моделей: арифметизации алгоритмов, концепции абстрактной машины, принципа нормализации (т.е. преобразование слов в произвольных алфавитах с помощью подстановок).
Замечание:
Абстрактная дескриптивная теория алгоритмов не учит строить конкретные алгоритмы. Этим занимается прикладная метрическая (количественная) теория алгоритмов. В отличие от абстрактной теории алгоритмов прикладная теория рассматривает не только детерминированные, но также вероятностные (стохастические) и эвристические алгоритмы. В последнем случае, кроме детерминированных или статически заданных правил, алгоритм включает также содержательные указания о целесообразном направлении процесса.
Предмет и содержание читаемого курса.
Предметом изучения в читаемом курсе являются формальные уточнения интуитивного понятия «алгоритм» с различных точек зрения: арифметизации, нормализации и построения абстрактной машины. Целью читаемой дисциплины студентам специальности 2201 является усвоение необходимости формулировать алгоритмические проблемы как проблемы решения вопроса о существовании алгоритма для решения данной бесконечной серии однотипных задач и нахождение такого алгоритма в случае, если он существует.
Содержанием курса являются следующие вопросы:
языки операндов и алгоритмические языки;
рекурсивные функции как математический вариант уточнения понятия вычислимой арифметической функции;
машины Тьюринга как математический эквивалент для общего интуитивного представления об алгоритме;
нормальный алгоритм Маркова;
сложность алгоритма.