Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Т.Вероят..docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
736.27 Кб
Скачать

5) Произведение событий. Зависимые и независимые события. Условная вероятность события. Теоремы умножения вероятностей.

Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А — деталь годная, В — деталь окрашенная, то АВ — деталь годна и окрашена.

Зависимые и независимые события. Условная вероятность события.

Событие A называется независимым от события B, если возможность наступления события A не зависит от того, произошло событие B или нет.

В противном случае события являются зависимыми. 

Условной вероятностью события B при наличии A называется величина

(2.8)

(при этом полагается, что P(A) не равно 0).

Условную вероятность события P(B/A) можно трактовать как вероятность события B, вычисленная при условии, что событие A произошло.

Заметим, что если имеется несколько событий A1, A2, …, An, то их попарная независимость (т.е. независимость любых двух событий Ai и Aji≠j) еще не означает их независимости в совокупности.

Теоремы умножения вероятностей.

ошибка-пересечение (2.9)

Вероятность произведения (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого (правило умножения вероятностей).

Правило умножения вероятностей может быть обобщено на случай произвольного числа событий

(2.10)

т.е. вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого последующего события вычисляется при условии, что все предыдущие имели место.

 (МОЖНО ЕЩЁ ДОБАВИТЬ ИЗ СЛЕДУЩЕГОВОПРОСА)ЕСЛИ ЧЕ!!

6)Независимые события. Теорема умножения для независимых событий.

Событие A называется независимым от события B, если его вероятность не зависит от того, произошло событие B или нет, т.е. P(B/A)=P(B).

Для независимых событий правило произведения вероятностей принимает вид:

.(2.11)

Несколько событий A1, A2, …, An называются независимыми, если любое из них не зависит от любой комбинации (произведения) любого числа других. Для независимых событий правило умножения принимает вид:

(2.12)

или

(2.13)

т.е. вероятность произведения нескольких независимых событий равна произведению вероятностей этих событий.

Заметим, что если имеется несколько событий A1, A2, …, An, то их попарная независимость (т.е. независимость любых двух событий Ai и Aji≠j) еще не означает их независимости в совокупности.

7) Сумма событий. Совместные и несовместные события. Теоремы сложения вероятностей.

Суммой событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одному из событий A или B. Обозначается A + B.

Два события называются несовместными в данном испытании, если появление одного из  них исключает появление другого, и совместными в противном случае.

Теорема. Вероятность суммы конечного числа несовместных событий   равна сумме вероятностей этих событий

(2.1)

Доказательство. Докажем эту теорему для случая суммы двух несовместных событий   и  .

Пусть событию   благоприятствуют   элементарных исходов, а событию   исходов. Так как события   и   по условию теоремы несовместны, то событию   благоприятствуют   элементарных исходов из общего числа n исходов. Следовательно,

,

где   — вероятность события  ;   — вероятность события  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]