
- •9) Сумма вероятностей событий, образующих полную группу.
- •Предмет теории вероятностей. Событие. Классификация событий.
- •2)Классическое и статистическое определение вероятностей.
- •3)Геометрическая вероятность
- •4)Элементы комбинаторики
- •5) Произведение событий. Зависимые и независимые события. Условная вероятность события. Теоремы умножения вероятностей.
- •6)Независимые события. Теорема умножения для независимых событий.
- •7) Сумма событий. Совместные и несовместные события. Теоремы сложения вероятностей.
- •8) Следствия из теорем сложения и умножения.
- •9) Сумма вероятностей событий, образующих полную группу.
- •10)Вероятность противоположного события. Вероятность осуществления только одного и хотя бы одного события.
- •11)Условная вероятность. Теорема умножения двух зависимых событий.
- •12) Теорема сложения вероятностей совместных событий.
- •Формулировка
- •Следствие
- •16. Наивероятнейшее число появления события а в n независимых испытаниях
- •19. Дискретные и непрерывные случайные величины
- •20. Законы распределения случайных величин
- •Свойства дисперсии
- •25.Математическое ожидание непрерывной случайной величины:
- •26. Дисперсия и среднее квадратическое отклонение непрерывной случайной величины.
- •27.Моменты, коэффициенты асимметрии и эксцесса
- •29. Закон распределения вероятностей многомерных с.В.
- •30.Числовые характеристики системы двух дтскретных случайных величин
- •31.Корреляционный момент. Коэффициент корреляции
- •32.Функцич распределения вероятностей
- •34.Условные законы распределения составляющих
- •35.Функция случайных аргументов
- •36.Функция дискретного случайного аргумента и ее числовые характеристики
- •37.Неравенство Чебушева
- •39. Теорема Бернулли
- •40 Центральная предельная теорема теории вероятностей . Теорема Ляпунова
- •41. Классификация точечных оценок
- •43. Числовые характеристики выборки и методы их расчета переходом к условным вариантам.
- •Выборочное среднее
- •44. Эффективные, несмещенные и состоятельные оценки генеральных параметров по выборочным данным.
- •45. Точечная оценка генеральной средней по выборочной средней
- •46. Точечная оценка генеральной дисперсии по выборочной средней
- •47 Исправленная дисперсия
- •48.Интервальные оценки. Доверительный интервал. Надежность. Доверительный интервал оценки параметров нормального распределения.
- •49. Элементы корреляционного анализа. Линейная корреляция. Уравнения прямых линий регрессии. Коэффициент корреляции. Оценка коэффициента корреляции по выборочным данным.
- •Линейная корреляция
- •50. Определение параметров уравнения регрессии методом наименьших квадратов. Формула для вычисления коэффициента корреляции.
44. Эффективные, несмещенные и состоятельные оценки генеральных параметров по выборочным данным.
Для того чтобы статистические оценки давали «хорошие» приближения оцениваемых параметров, они должны удовлетворять определенным требованиям: оценка должна быть несмещенной, эффективной и состоятельной.
Несмещенной называют статистическую оценку Q*, математическое ожидание которой равно оцениваемому параметру Q при любом объеме выборки, т. е.
M(Q*) = Q.
Смещенной называют оценку, математическое ожидание которой не равно оцениваемому параметру
Эффективной называют статистическую оценку, которая (при заданном объеме выборки п) имеет наименьшую возможную дисперсию.
При рассмотрении выборок большого объема (n велико!) к статистическим оценкам предъявляется требование состоятельности.
Состоятельной называют статистическую оценку, которая при п¥® стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при п¥® стремится к нулю, то такая оценка оказывается и состоятельной.
45. Точечная оценка генеральной средней по выборочной средней
Основными параметрами генеральной совокупности являются математическое ожидание (генеральная средняя) М(Х) и среднее квадратическое отклонение . Это постоянные величины, которые можно оценить по выборочным данным. Оценка генерального параметра, выражаемая одним числом, называется точечной.
Точечной оценкой
генеральной средней
является выборочное среднее
.
Выборочным средним называется среднее арифметическое значение признака выборочной совокупности.
Если все значения x1, x2,..., xn признака выборки различны (или если данные не сгруппированы), то:
Если же все значения признака x1, x2,..., xn имеют соответственно частоты n1, n2,..., nk, причем n1 + n2 +...+ nk = n (или если выборочное среднее вычисляется по вариационному ряду), то
В том случае, когда статистические данные представлены в виде интервального вариационного ряда, при вычислении выборочного среднего значениями вариант считают середины интервалов. Выборочное среднее является основной характеристикой положения, показывает центр распределения совокупности, позволяет охарактеризовать исследуемую совокупность одним числом, проследить тенденцию развития, сравнить различные совокупности (выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0).
46. Точечная оценка генеральной дисперсии по выборочной средней
47 Исправленная дисперсия
Выборочная дисперсия является смещенной оценкой генеральной дисперсии, т.е. математическое ожидание выборочной дисперсии не равно оцениваемой генеральной дисперсии, а равно
Для исправления выборочной дисперсии достаточно умножить ее на дробь
Получим исправленную дисперсию. Исправленная дисперсия является несмещенной оценкой.
В качестве оценки генеральной дисперсии принимают исправленную дисперсию.
Для оценки среднего квадратического генеральной совокупности используют исправленное среднее квадратическое отклонение
Замечание: формулы для вычисления выборочной дисперсии и исправленной дисперсии отличаются только знаменателями. При достаточно больших n выборочная и исправленная дисперсии мало отличаются, поэтому на практике исправленной дисперсией пользуются, если n<30