
- •Проектирование и расчет оптических систем фар головного освещения автомобилей и тракторов
- •1.Принцип действия, преимущества и недостатки системы электроснабжения с дополнительным выпрямителем.
- •2. Система электроснабжения с аналоговым регулятором напряжения, имеющим расширенные функциональные возможности
- •3. Система электроснабжения с цифровым регулятором напряжения, имеющим расширенные функциональные возможности
- •4. Условия осуществления начального самовозбуждения генератора без аккумуляторной батареи; критическая частота вращения ротора генератора для его начального возбуждения.
- •5. Характеристика холостого хода генератора с клювообразным ротором; влияние на неё начального намагничивания магнитной системы, конструктивных параметров и частоты вращения ротора генератора.
- •6. Токоскоростная характеристика генератора с клювообразным ротором; её характерные точки.
- •7. Факторы влияющие на токоскоростную характеристику генератора.
- •8. Схемы выпрямительных блоков автомобильных генераторов.
- •9. Расчет часовой отдачи автомобильного генератора.
- •10. Поверочный расчет баланса электроэнергии на автомобиле.
- •11. Характеристика холостого хода индукторного генератора, её характерные области.
- •12. Работа выпрямителя генератора в реальных условиях, её учет при инженерных расчетах генератора.
- •13. Форма фазного напряжения и работа выпрямителя индукторного генератора.
- •14. Назначение и основные требования к стартерным аккумуляторным батареям. Условия работы аккумуляторных батарей на транспортных средствах. Типы аккумуляторных батарей.
- •15. Основные электрические и технические характеристики свинцовых стартерных аккумуляторных батарей.
- •2.2. Технические характеристики свинцовых стартерных аккумуляторных батарей
- •16. Направление развития конструкций свинцовых стартерных аккумуляторных батарей
- •16. Вольт-амперные разрядные характеристики свинцовых стартерных аккумуляторных батарей и их расчет
- •1 7. Три этапа работы батарейной системы зажигания
- •18. Характеристики батарейной системы зажигания
- •19. Воспламенение рабочей смеси искровым разрядом. Пробивное напряжение.
- •20. Факторы, влияющие на величину пробивного напряжения. Закон Пашена
- •21. Система зажигания с магнитоэлектрическим датчиком
- •22. Система зажигания с регулируемым временем накопления энергии
- •23. Пусковые качества двс
- •24. Особенности работы электростартера на двигателе. Требования, предъявляемые к электростартерам. Классификация электростартеров.
- •25. Рабочие и механические характеристики электростартеров
- •27. Устройство современных систем зажигания. Модуль зажигания.
- •28. Светотехнические характеристики фар головного света освещения. Световой поток.
- •29. Основные светотехнические параметры световых приборов
- •30. Особенности конструкции фар головного освещения
- •31. Измерительный экран. Назначение контрольных точек и зон измерительного экрана. Фотометрирование фар головного освещения с европейской системой светораспределения.
- •Принцип устройства фар головного освещения.
- •36. Особенности конструкции и принцип формирования светового пучка фар головного освещения проекторного типа.
- •37. Газоразрядные лампы - «Ксеноновый» и «Би-Ксеноновый» свет.
- •38. Автомобильные светодиоды. Их Светотехнические и эксплуатационные характеристики. Особенности светораспределения автомобильных светодиодов.
- •40. Объясните принцип работы станка для автоматического наматывания обмоток якорей электромашин, представленного на рисунке.
- •42. Перечислите исходные данные для проектирования технологического процесса, порядок проектирования и документацию для оформления технологического процесса.
- •43. Объясните порядок расчёта основных параметров технологического процесса.
- •45. Перечислите способы измерения диаметра провода при намотке обмоток. Охарактеризуйте их преимущества и недостатки.
- •46. Перечислите основные операции технологического процесса изготовления печатных плат.
- •47. Охарактеризуйте основные операции процесса изготовления электронных изделий атэ методом гибридной технологии.
- •48. Объясните принцип работы оборудования для пайки «волной».
- •Каковы требования к стендовому и диагностическому оборудованию?
- •Какие особенности присущи тестерам (сканерам) для проверки электронных блоков управления?
- •Какова типовая рабочая программа мотор тестера?
- •52. Какие приборы применяют для измерения токсичности ог транспортных машин?
- •Какие приборы используют для проверки технического состояния акб?
- •Какие стенды и приборы применяют для проверки технического состояния генераторов, электростартеров и систем зажигания?
- •Какие приборы применяют для проверки и регулирования внешних световых приборов?
- •Какова структурная схема типового мотор тестера?
- •57. Краткая история развития систем управления двигателями. Классификация систем управления двигателями.
- •58. Состав, назначение, принцип действия и особенности компонентов современных систем управления бензиновыми двигателями.
- •59. Типичные режимы управления двигателем. Краткая характеристика основных режимов управления двигателем.
- •60. Синхронизация в системе управления двигателем. Типы систем и датчиков синхронизации.
- •61. Регистрация основных параметров управления двигателем: частоты вращения коленчатого вала, расхода воздуха, абсолютного давления.
- •63. Регистрация сигнала датчика детонации. Управление моментом зажигания по детонации.
- •64. Управление составом смеси с обратной связью по содержанию кислорода в отработавших газах.
- •65. Управление частотой вращения коленчатого вала на холостом ходу. Устройства управления подачей воздуха во впускную систему двигателя.
- •66. Понятие о бортовой диагностике. Диагностические режимы по obdii/eobd.
13. Форма фазного напряжения и работа выпрямителя индукторного генератора.
Обычно в индукторном генераторе ширина зубца статора и ротора одинакова. В этом случае зависимость магнитной проводимости в воздушном зазоре от времени имеет форму близкую к трапеции .
Таким
образом, форма фазной ЭДС индукторного
генератора далека от синусоиды. Причем
часть периода ЭДС вообще равна нулю. В
трехфазном генераторе этот промежуток
времени равен
,
а в пятифазном –
.
Рисунок 13.1 – Форма фазного напряжения индукторного генератора.
Так
как зависимость электродвижущей силы
фазы генератора от угла поворота его
ротора (в электрических градусах)
является периодической, то ее можно
разложить в ряд Фурье. Тогда для любой
гармоники трехфазного генератора,
имеющего форму фазного напряжения,
показанную на рисунке 13.1 можем записать:
,
где
– номер гармоники;
– амплитудное
значение ЭДС соответствующей гармоники.
Для
первой гармоники
.
Для второй гармоники
.
Отсюда видно, что амплитуда второй
гармоники составляет более 50% от амплитуды
первой гармоники. Это свидетельствует
о сильных искажениях фазного напряжения.
В качестве выпрямителя в индукторном генераторе как и в генераторе с клювообразным ротором применяется трехфазный выпрямительный мост.
Особенность работы выпрямителя индукторного генератора состоит в том, что выпрямляемое им напряжение далеко не синусоидально. Временные диаграммы фазных и выпрямленного напряжений индукторного генератора приведены на рисунке.
Рисунок 13.2 – Диаграммы фазных и выпрямленного напряжений.
На этом рисунке приняты следующие обозначения:
– амплитуда
фазного напряжения;
,
,
– фазные напряжения генератора.
Верхние диаграммы демонстрируют форму фазных напряжений. Каждое из фазных напряжений состоит из полуволны положительных мгновенных значений и полуволны отрицательных мгновенных значений. Каждая полуволна имеет длительность одну треть периода. Остальную одна треть периода фазные напряжения имеют нулевые значения. Напряжения разных фаз сдвинуты друг относительно друга также на одну треть периода.
Выпрямленное напряжение генератора в каждый момент времени формируется как разность положительного и отрицательного напряжения фаз.
Как видно из нижней диаграммы рисунка 13.2, имеют место провалы выпрямленного напряжения до нуля, так как все мгновенные значения фазных напряжений в моменты времени соответствующие углам кратным 120градусов равны нулю. За один период (то есть 360 градусов) выпрямленное напряжение имеет три пульсации. Величина пульсаций выпрямленного напряжения индукторного генератора на практике немногим меньше величины амплитудного значения выпрямленного напряжения огромны по сравнению с пульсациями напряжения в клювообразном генераторе. Поэтому пульсации выпрямленного напряжения индукторного генератора намного больше по величине, чем у генератора с клювообразным ротором. Кроме того, у клювообразного генератора за период будут иметь место шесть пульсаций выпрямленного напряжения, а не три, как у индукторного генератора. Таким образом, у индукторного генератора частота пульсаций выпрямленного напряжения в два раза меньше, чем у генератора с клювообразным ротором, а амплитуда пульсаций - больше и поэтому выходное напряжение индукторного генератора сложнее фильтровать. Поэтому качество напряжения индукторного генератора хуже, чем у генератора с клювообразным ротором.