Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovo_1_peredelanoe_2.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
301.06 Кб
Скачать

7. Общая характеристика теории Максвелла. Уравнения Максвелла. Вихревое магнитное поле??? Ток смещения. (все интегралы круговые!!!)

Первое уравнение Максвелла в интегральной форме. Согласно определению, э.д.с. равна циркуляции вектора напряженности электрического поля Е:

Е = ∫E·dl, (2)

L

которая для потенциального поля равна нулю. В общем случае изменяющегося вихревого поля для Еин получим

E·dl = - dФm /dt = -∫(∂B/∂t)dS. (3)

L S

(3) – первое уравнение Максвелла: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру L равна взятой с обратным знаком скорости изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак « - « соответствует правилу Ленца для направления индукционного тока. Отсюда следует, что переменное магнитное поле создает в пространстве вихревое электрическое поле независимо от того, находится в этом поле проводник (замкнутый проводящий контур) или нет. Полученное таким образом уравнение (3) является обобщением уравнения (2), которое справедливо только для потенциального поля, т.е. электростатического поля.

Ток смещения и второе уравнение Максвелла в интегральной форме. Максвелл высказал гипотезу, что магнитное поле порождается не только электрическими токами, текущими в проводнике, но и переменными электрическими полями в диэлектриках или вакууме.

Ток проводимости вблизи обкладок конденсатора можно записать так

I = dq/dt = (d/dt)∫σ dS = ∫(∂σ/∂t)dS = ∫(∂D/∂t)dS

S S S

(поверхностная плотность заряда σ на обкладках конденсатора равна электрическому смещению D в конденсаторе).

Подынтегральное выражение можно рассматривать как частный случай скалярного произведения (∂D/∂t)dS, когда (∂D/∂t) и dS взаимно параллельны. Поэтому для общего случая можно записать I = ∫(∂D/∂t)dS jсм = ∂D/∂t. (5) Выражение(5) Максвелл назвал плотностью тока смещения. Направление вектора плотности тока j и jсм совпадает с направлением вектора ∂D/∂t.

второе уравнение Максвелла: циркуляция вектора напряженности Н магнитного поля по любому замкнутому контуру L равна суммарному току проводимости, который пронизывает поверхность S, натянутую на этот контур, сложенному со скоростью изменения потока вектора электрической индукции D через эту поверхность.

Третье и четвертое уравнения Максвелла. Третье уравнение Максвелла выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только электрическими токами), т.е. теорема Гаусса оказалась справедливой не только для электро- и магнитостатических полей, но и для переменного во времени вихревого электромагнитного поля:

DdS = q,

S

BdS = 0.

S

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]