
- •1.Основные элементы систем нефтегазосбора. Требования к промысловым системам нефтегазосбора и подготовки.
- •2. Унифицированная схема сбора и подготовки нефти, газа и воды института Гипровостокнефть и внииспТнефть.
- •3.Принципиальные схемы подготовки сернистых и девонских нефтей института ТатНипИнефть и оао «Татнефть».
- •4.Классификация и условные обозначения нефтей. Гост р 51858—2002.
- •3) По степени подготовки нефти подразделяют на группы:
- •5.Современные методы измерения продукции скважин (Спутник-а, Спутник–б, Спутник-в, расходомеры, влагомер, диафрагмы).
- •6. Классификация промысловых трубопроводов. Гидравлический расчет простых трубопроводов.
- •7. Классификация промысловых трубопроводов. Гидравлический расчет сложных трубопроводов. Расчет сборного и раздаточного коллекторов.
- •8.Неизотермическое течение жидкостей в трубопроводе. Расчет трубопроводов при неизотермическом течении жидкости
- •9.Гидравлический расчет трубопроводов, транспортирующих вязкопластичные жидкости.
- •10.Гидравлический расчет трубопроводов для нефтяных эмульсий
- •11. Классификация, разновидности конструкций, основные элементы сепараторов. Сравнительная характеристика сепараторов различных типов
- •12.Критерии качества сепарации. Определение критического размера пузырьков газа в турбулентном потоке(формула Меведева в.Ф.)
- •13.Расчет количества газа, выделяемого из нефти по коэффициенту растворимости.
- •15.Определение пропускной способности и диаметра нефтегазовых сепараторов. Расчет гравитационных сепараторов по жидкости.
- •14.Определение пропускной способности и диаметра нефтегазовых сепараторов. Расчет гравитационных сепараторов по газу.
- •16.Определение пропускной способности и диаметра нефтегазовых сепараторов. Расчет циклонных сепараторов.
- •17.Определение пропускной способности и диаметра нефтегазовых сепараторов. Расчет насадочных сепараторов.
- •19. Основные функции концевого делителя фаз (rla)/ определение длины и диаметра.
- •20. Методы стабилизации нефти
- •21. Основные методы сокращения потерь углеводородов в атмосферу
- •3. Гус (газоуравнительная система).
- •22. Расчет потерь легких фракций нефти при «дыханиях» резервуаров
- •23. Сокращение потерь нефти. Особенности принципиальной газоуравнительной системы(гус).
- •24.Принципиальная технологическая схема системы улф.
- •25.Система улф для блоков высокого и низкого давлений.
- •26.Классификация и условия образования нефтяных эмульсий. Основные свойства нефтяных эмульсий.
- •27.Естественные эмульгаторы и их влияние на стойкость эмульсии
- •28. Промежуточные слои и способы их разрушения.
- •29. Основные направления и развитие методов подготовки нефти
- •36. Ассортимент деэмульгаторов, применяемых в оао «Татнефть»
- •30.Методы разрушения нефтяных эмульсий обратного типа.
- •31. Методы очистки нефти от сероводорода
- •32.Технологическая схема подготовки высоковязких нефтей и битумов
- •33.Классификация деэмульгаторов и их физико-химические свойства.
- •34.Основные технологические требования, предъявляемые к деэмульгаторам.
- •37.Обессоливание нефти
- •38.Автоматизированная установка по измерению количества и качества товарной нефти (Рубин2м)
- •39.Зарубежный опыт автоматизированной сдачи товарной нефти (лакт)
4.Классификация и условные обозначения нефтей. Гост р 51858—2002.
При оценке качества нефть подразделяют на классы, типы, группы и виды.
1)в зависимости от масс.доли серы нефть подразделяют на классы 1-4:
1-малосернистая до 0,6;2-сернистая 0,61 – 1,8; 3-высокосернистая 1,81-3,5;4-особо высокосернистая свыше3,5.
2) в зависимости от плотности на 5 типов:0- особо легкая (750-830)
1-легкая (830,1-850)2- средняя(850,1-870)3-тяжелая(870,1-895) 4-битуминозная(895,1-1000).
3) По степени подготовки нефти подразделяют на группы:
Наименование показателя |
Норма для нефти группы |
||
1 |
2 |
3 |
|
1 Массовая доля воды, %, не более |
0,5 |
0,5 |
1,0 |
2 Массовая концентрация хлористых солей, мг/дм3, не более |
100 |
300 |
900 |
3 Массовая доля механических примесей, %, не более |
0,05 |
||
4 Давление насыщенных паров, кПа (мм рт. ст.), не более |
66,7 (500) |
||
5 Массовая доля органических хлоридов во фракции, выкипающей до температуры 2040С, млн.-1 (ррm), не более |
10 |
10 |
10 |
4) По массовой доле сероводорода и легких меркаптанов нефть подразделяют на виды 1 - 3
Наименование показателя |
Норма для нефти вида |
|
1 |
2 |
|
1. Массовая доля сероводорода, млн.-1 (ррт), не более |
20 |
100 |
2. Массовая доля метил- и этилмеркоптанов в сумме, млн.-1 (ррт), не более |
40 |
100 |
Условное обозначение нефти состоит из четырех цифр, соответствующих обозначениям класса, типа, группы и вида нефти. При поставке нефти на экспорт к обозначению типа добавляется индекс "э". Структура условного обозначения нефти: |
|
5.Современные методы измерения продукции скважин (Спутник-а, Спутник–б, Спутник-в, расходомеры, влагомер, диафрагмы).
«Спутник - А» предназначен для автоматического переключения скважин на замер и автоматического измерения дебита скважин, подключенных к «Спутнику», контроля за работой скважин по наличию подачи жидкости и автоматической блокировки скважин при аварийном состоянии.
«Спутник - А» состоит из двух блоков: замерно - переключающего и блока местной автоматики (БМА), в котором происходят автоматическая регистрация измеренного дебита скважин и переключение их на замер. Поочередное подключение скважин на замер осуществляется при помощи многоходового переключателя скважин (ПСМ) 13, в который поступает продукция всех скважин по выкидным линиям. Каждый секторный поворот роторной каретки переключателя 12 обеспечивает поступление продукции одной из подключенных скважин через замерный патрубок гидроциклонный сепаратор. Продукция остальных скважин в это время проходит сборный коллектор. В гидроциклонном сепараторе свободный газ отделяется от жидкости. Дебит жидкости скважины, подключенной на замер, измеряется при кратковременных пропусках накапливающейся в сепараторе жидкости через турбинный расходомер типа ТОР-l или «Норд», установленный выше уровня жидкости в технологической емкости гидроциклонного сепаратора. Накопление жидкости в нижнем сосуде сепаратора до заданного верхнего уровня и выпуск ее до нижнего уровня осуществляется поплавком регулятором и заслонкой на газовой линии. Всплывая до верхнего уровня, поплавок регулятора закрывает газовую линию и, следовательно, повышается давление в сепараторе, в результате чего жидкость продавливается из сепаратора через турбинный расходомер. Когда поплавок достигает нижнего заданного уровня, заслонка открывается, давление между сепаратором и коллектором выравнивается, и продавливание жидкости прекращается. Время накопления жидкости в сепараторе и число пропусков жидкости через счетчик за время замера зависит от дебита измеряемой скважины. Дебит каждой скважины определяют, регистрируя накапливаемые объемы жидкости (м3), прошедшие через турбинный счетчик, на индивидуальном счетчике импульсов в блоке БМА. Следующую скважину переключают на замер по команде с БМА при помощи электродвигателя, гидропривода и силового цилиндра, который поворачивает каретку переключателя в другие положения. Турбинный расходомер одновременно служит сигнализатором периодического контроля подачи скважины. Если подача в контролируемой скважине отсутствует, то БМА выдает аварийный сигнал в систему телемеханики. Аварийная блокировка всех скважин при повышении давления в коллекторе или его повреждении автоматически осуществляется при помощи отсекателей. Недостаток «Спутника-А» является невысокая точность измерения при больших дебитах скважин нефти расходомером турбинного типа, обусловленная плохой сепарацией газа от нефти в гидроциклонном сепараторе вследствие попадания в расходомер вместе с жидкостью пузырьков газа и отсутствия на «Спутнике - А» влагомера.
1 - выкидные линии от скважин; 2- обводненная скважина; 3 – замерный патрубок; 4- гидроциклонный сепаратор; 5- заслонка на газовой линии; 6 - турбинный расходомер; 7 - уровнемер (поплавковый); 8 - гидропривод; 9 - электродвигатель; 10 - отсекатели; 11- сборный коллектор; 12- роторная каретка переключателя; 13 - многоходовой переключатель скважин (ПСМ); 14 - силовой цилиндр.
Схема "Спутника-В», разработанного Грозненским филиалом ВНИИКАнефгегаз
1 - распределительная батарея; 2 - штуцеры; 3- емкость для шаров; 4 -трехходовые клапаны; 5- трехходовые краны; 6-замерная линия; 7-коллектор обводненной жидкости; 8- коллектор безводной нефти; 9 - гаммa-датчики нижнего и верхнего уровней жидкости; 10 - сепаратор; 11- диафрагма для измерения газа; 12- заслонка; 13- сифон; 14- тарированная емкость; 15- тарированная пружина.
Нефтегазовая смесь подается от скважин в распределительную батарею 1, где, пройдя штуцер, она попадает в трехходовой клапан 4. Из него нефтегазовая смесь может направляться или в линию 6 для измерения нефти и газа в сепараторе 10, или в линию 8- общую для безводной нефти, поступающей со всех скважин. Переключение на замер и обводненных, и безводных скважин проводится автоматически через определеннее время при помощи блока местной автоматики БМА и трехходовых клапанав 4. Количество жидкости, попавшей в сепаратор, измеряется при помощи тарированной емкости, гамма-датчиков, подающих сигнал уровней жидкостей на БМА, и плоской тарированной пружины 15. Дебит жидкости (нефть-вода) определяется измерением массы жидкости, накапливаемой в объеме между гамма-датчиком верхнего и нижнего уровней и регистрации времени накопления этого объема. Дебит чистой нефти определяемся сравнением массы жидкости в заданном объеме с массой чистой воды, которая занимала бы этот объем
После тою как тарированная емкость 14 наполнялась жидкостью, и вес ее измерен, блок местной автоматики включает электрогидравлический привод, и заслонка 12 на газовой линии прикрывается. В результате этого в сепараторе увеличиваются давление, и жидкость, скопившаяся в емкости 14, через сифон 13 выдавливается в коллектор 7. Количество газа и меряется эпизодически при помощи диафрагмы 11.
При обводнении одной из скважин ее подключают для постоянной работы к коллектору обводненной нефти через трехходовой кран 5, а измерять ее дебит можно описанным способом при помощи автоматически переключаемого трехходового клапана 4.
Недостаток «Спутники -В» заключается в том, что при измерении парафинистой нефти отложения парафина в тарированной емкости могут существенно снизить точность определения количества жидкости.
Схема «Спутника Б-40», разработанного Октябрьским филиалом ВНИИКАнефтегаза
1 обратные клапаны; 2 задвижки; 3 переключатель скважин многоходовой (ПСM); 4 роторный переключатель скважин; 5 замерная линия; 6 общая линия; 7 отсекатели; 8 коллектор обводненной нефти; 9 и 12 задвижки закрытые; 10 и 11 задвижки открытые; 13 гидроциклонный сепаратор; 14 регулятор перепада давления; 15 расходомер газа; 16 и 1ба золотники; 17 поплавок; 18 расходомер жидкости; 19 поршневой клапан; 20 влагомер; 21 гидропривод; 22 электродвигатель; 23 сборный коллектор; т выкидные линии от скважин.
На «Спутнике Б-40» установлен автоматический влагомер нефти, который непрерывно определяет процентное содержание воды в потоке нефти, так же автоматически при помощи турбинного расходомера (вертушки) 15 измеряется количество выделившегося из нефти в гидроциклоне свободного газа.
При помощи «Спутника Б-40» так же, как «Спутника-В» и «Спутника-А», можно измерить раздельно дебиты обводненных и необводненных скважин. Для этого поступают следующим образом. Если, например, скважины обводнились, а остальные двенадцать скважин, подключенных к «Спутнику», подают чистую нефть, то вручную перекрывают специальные обратные клапаны 1, и продукция обводненных скважин по байпасной линии через задвижки 12 направляется в сборный коллектор. Продукция скважин, подающих чистую нефть, направляется в емкость многоходового переключателя скважин ПСМ, из которого она поступает в сборный коллектор, а далее в коллектор безводной нефти. Жидкость любой скважины, поставленной на замер, направляется через роторный переключатель скважин 4 в гидроциклонный сепаратор 13. На выходе газа из сепаратора установлен регулятор перепада давления 14, поддерживающий постоянный перепад между сепаратором и расходомером газа 15. Постоянный перепад давления передается золотниковыми механизмами 16 и 16а, от которых также отводится постоянный перепад на поршневой клапан.
Количество жидкости измеряется по скважинам следующим образом.
Когда поплавок 17 уровнемера находится в крайнем нижнем положении, верхняя вилка поплавкового механизма нажимает на верхний выступ золотника, в результате чего повышенное давление от регулятора 14 передается на правую часть поршневого клапана 19 и прикрывает его; подача жидкости прекращается, и турбинный расходомер 18 перестает работать. С этого момента уровень жидкости в сепараторе повышается. Как только уровень жидкости в сепараторе достигнет крайнего верхнего положения и нижняя вилка поплавкового механизма нажмет на выступ золотника 16а, повышенное давление от регулятора 14 действует на левую часть поршневого клапана 19 и открывает его; начинается течение жидкости в системе, и турбинный расходомер отсчитывает количество прошедшей через него жидкости.
Для определения процента обводненности нефти на «Спутнике» установлен влагомер 20, через который пропускается вся продукция скважины.
Расходомеры ТОР-1 предназначаются для измерения жидкости вязкостью не более 80 сСт. Расходомеры ТОР-1 обеспечивают как местный отсчет показаний, так и передачу показаний при помощи электромагнитного датчика на БМА.
Расходомеры ТОР-1 состоят из двух основных частей: турбинного счетчика жидкости и блока питания.
1 – сварной корпус, 2 – обтекатель, 3 – магнио-индукционный датчик, 4 – экран-отражатель, 5 – понижающий зубчатый редуктор, 6 – перегородки, 7 – электромагнитный датчик, 8 – механический счетчик, 9 – диск с магнитами, 10 – магнитная муфта, 11 – крыльчатки, 12 – крышка, 13 – регулирующая лопатка.
Турбинный расходомер ТОР-1 работает следующим образом. Жидкость, проходя через входной патрубок корпуса 1 и обтекатель 2, попадает на лопатки крыльчатки 11 и приводит ее во вращение. После крыльчатки направление движения жидкости экраном изменяется на 180°, и она через окна обтекателя поступает в выходной патрубок. Число оборотов крыльчатки прямо пропорционально количеству прошедшей жидкости.
Вращательное движение крыльчатки передается через понижающий редуктор и магнитную муфту на механический счетчик со стрелочной шкалой (цена деления 0,005 м3). Одновременно со стрелкой механического счетчика вращается находящийся с ней на одной оси диск 9 с двумя постоянными магнитами, которые, проходя мимо электромагнитного датчика, замыкают расположенный в нем магнитоуправляемый контакт. Получаемые при этом электрические сигналы регистрируются на блоке управления счетчиком, т. е. дублируют показания местного механического счетчика. В то же время каждая лопатка, проходя мимо магнитоидукционного датчика, выдает электрический сигнал, который регистрируется в блоке регистрации.
Расход чистой нефти, прошедшей через ТОР-1, определяется автоматически как разность между показаниями ТОР-1 и показаниями датчика влагомера.
Схема емкостного датчика
1 – сварной корпус, 2 – стеклянная труба, 3 – электрод, 4 – регулятор длины электрода (шток), 5 – штурвал, 6 и 10 – верхний и нижний фланцы соответственно, 7 – стальная труба, 8 – кольцо для крепления стеклянной трубы, 9 – металлический цилиндрик.
На верхнем фланце 6 монтируется внутренний электрод 3, особенностью которого является наличие регулятора его длины, действующего при помощи вращающегося штока. Роль изолятора выполняет стеклянная труба 2, которая при помощи специального кольца 8 и стального патрубка 7 крепится к верхнему фланцу 6. Внутри стеклянной трубы на длине 200 мм наносится распылением слой серебра, являющегося внутренним электродом 3 датчика. Вращая штурвал 5 вместе со штоком, можно выдвигать из электрода на требуемую длину металлический цилиндрик 9, контактирующий с серебряным покрытием, таким образом, настраивать влагомер на измерение различных сортов нефти с различной обводненностью. Шкала влагомера, находящаяся на верхнем фланце, отрегулирована в процентах объемного содержания воды. На точность измерения этим прибором количества пластовой воды и нефти значительное влияние оказывают:
1) изменение температуры нефтеводяной смеси;
2) степень однородности смеси;
3) содержание пузырьков газа в потоке жидкости;
4) напряженность электрического поля в датчике.