
- •Конспект лекцій
- •Анотація Змісту вибіркової дисципліни «Автомобільні двигуни»
- •Заняття № 1. Газові закони та цикли.
- •2. Загальні поняття про газ.
- •1.1.Схема перерозподілу енергії в термодинамічній системі.
- •6. Другий закон термодинаміки.
- •7. Цикл компресора.
- •3. Газові закони. Суміш газів.
- •5.Термодинамічні процеси
- •Тема: "Теоретичні цикли"
- •2. Процес впуску.
- •3. Процес стиску.
- •Тема: Дійсні цикли
- •4. Процес випуску
- •5. Показники робочого циклу і двигуна.
- •5.2. Ефективні показники двигуна.
- •Тепловий баланс двигуна (самостійно)
- •Заняття № 5. Карбюрація План заняття.
- •1. Вимоги до карбюратора.
- •2. Елементарний карбюратор з графіком зміни тисків.
- •3. Швидкість руху повітря та палива та їх миттєва витрата.
- •1. Явище карбюрації.
- •2. Найпростіший карбюратор
- •3. Характеристика найпростішого карбюратора
- •4. Характеристика ідеального карбюратора
- •2. Типи головних дозувальних систем ( самостійно)
- •5.1.4. Додаткові паливодозуючі системи і пристрої карбюраторів
- •Заняття № 6: « сумішоутворення в дизельних двигунах»
- •1. Процес розпилення палива
- •2. Вплив розпилення на процес сумішоутворення.
- •Заняття №7 . Характеристики автомобільних двигунів
- •2. Характеристика холостого ходу
- •6.2. Швидкісні характеристики
- •4. Навантажувальні характеристики (Самостійне вивчення)
- •5. Регулювальні характеристики
- •Заняття № 8. Кінематика кривошипно-шатунного механізму.
- •1. Типи кривошипно-шатунних механізмів, основні поняття і позначення ( самостійно )
- •2. Визначення переміщення, швидкості та прискорення поршня від кута повороту кривошипа.
- •1. Типи кривошипно-шатунних механізмів, основні поняття і позначення ( самостійно )
- •2 .Кінематичний розрахунок кшм
- •Заняття № 9. Динаміка кривошипно-шатунного механізму.
- •1. Зведення мас деталей кривошипно-шатунного механізму.
- •1. Зведення мас деталей кривошипно-шатунного механізму.
- •1.1 Зведення маси шатунної групи.
- •1.3.1. Визначення сумарної маси еквівалентної схеми рядного кшм.
- •1.3.2 Визначення сумарної маси еквівалентної схеми V- подібного кшм.
- •2. Сили і моменти, які діють в кривошипно – шатунному механізмі одноциліндрового двигуна.
- •2.1. Сили тиску газів. (самостійно)
- •2.2. Сили інерції .( самостійно)
- •2.3. Сила інерції обертових мас. (самостійно)
- •2.4. Сумарні сили і моменти, що діють в кшм одноциліндрового двигуна.
- •2.5. Аналітичний вираз сил і моментів.
- •2.6. Сили, які діють на шийки колінчастого валу.(самостійно)
- •Заняття № 10. Зрівноваженість двигунів План заняття.
- •1.Сили і моменти, які викликають не зрівноваженість двз та їх зрівноваження.
- •2. Зрівноваження багатоциліндрових двз.
- •1.1.Сили і моменти, які викликають не зрівноваженість двз
- •1.2.Загальні умови зрівноваженості двз. Критерії зрівноваженості
- •1.3. Зрівноваження одноциліндрового двигуна.
- •1.3.1. Зрівноваження сили інерції - kr
- •2. Зрівноваження багатоциліндрових двигунів.
- •2.1.Правила зрівноваження багатоциліндрових двигунів:
- •2.2. Зрівноваження 4-х тактного рядного 4-х циліндрового двигуна.
- •Заняття №11. Кривошипно-шатунний та газорозподільний механізми
- •1.2.1. Конструкція нерухомі групи деталей кривошипно-шатунного механізму
- •1.2.2. Конструкція рухомої групи деталей кривошипно-шатунного механізма.
- •2.Газорозподільний механізм
- •2.3. Типи грм та їх порівнювальна оцінка.
- •2.4. Конструкція, матеріал виготовлення деталей грм
- •Заняття № 12. Система охолодження та мащення. План заняття.
- •1. Типи систем, вимоги до систем охолодження та мащення, вимоги до вузлів.
- •2. Конструктивні особливості будови вузлів систем охолодження та мащення
- •1.1. Типи систем охолодження.
- •1.2. Рідинна система охолодження.
- •2.1. Особливості експлуатації рідинної системи охолодження
- •2.2. Повітряна система охолодження.
- •2. Система мащення
- •2.1. Вимоги до систем мащення, вимоги до вузлів.
- •2.2. Конструктивні особливості будови системи мащення
- •2.1. Вимоги до систем мащення, вимоги до вузлів.
- •2.2. Конструктивні особливості будови систем мащення
- •Перспективи розвитку двигунів нетрадиційних схем ( самостійне вивчення)
- •1. Адіабатні дизелі
- •2. Двигун зовнішнього згоряння
- •3. Роторно-поршневі двигуни
- •4. Газотурбінні двигуни
- •5. Парові двигуни
- •6. Електричні двигуни
- •7. Інерційні двигуни
- •Література
2. Система мащення
2.1. Вимоги до систем мащення, вимоги до вузлів.
2.2. Конструктивні особливості будови системи мащення
2.1. Вимоги до систем мащення, вимоги до вузлів.
До мастильної системі висувають такі вимоги:
надійна безперебійна подача мастила до тертьових деталей в кількості, достатній для відведення теплоти, що виділяється в результаті тертя;
постійне очищення масла від продуктів зносу, механічних домішок і продуктів розкладання масла;
підтримка в заданих межах температури масла, що надходить у двигун;
можливість швидкого прогрівання масла після пуску холодного двигуна;
простота і зручність експлуатації при мінімальних витратах на обслуговування.
Крім того, масло сприяє ущільненню камери згоряння і захисту деталей від корозії. В автомобільних двигунах застосовуються примусові комбіновані системи мащення. В них масло під тиском подається до підшипників колінчастого і розподільного валів, до інших деталей масло подається розбризгуванням і самоплином. На автомобільних двигунах одержала поширення система мащення з мокрим картером. В такій системі, масло після контактування з усіма підшипниками і парами тертя стікає і збирається в масляному піддоні. Тут відбувається його охолодження, гаситься піна, осаджуються забруднюючі домішки.
2.2. Конструктивні особливості будови систем мащення
Основними елементами системи є маслозабірник 5 (рис.2), масляний насос 3, масляний фільтр 3, масляний радіатор. Маслозабірник може бути нерухомий або рухомий (плаваючий).
Рис. 2. Схема системи мащення:
1 - редукційний клапан; 2 - масляний фільтр; 3 - масляний насос; 4 - масляний канал від корінногодо шатунного підшипника; 5 - маслозабірник; 6 - головна масляна магістраль; 7 - зливний канал; 8 - магістраль до підшипників колінчастого вала
Одним з основних елементів системи є масляний насос (зазвичай шестеренний) із зовнішнім зачепленням шестерень або з внутрішнім зачепленням (рис. 3). Насоси із внутрішнім зачепленням мають менші розміри і масу. Особливістю їх конструкції є розміщення осі внутрішньої шестерні ексцентрично відносно осі зовнішньої шестерні на половину висоти зуба. Масляні насоси зі зовнішнім зачепленням можуть розміщуватись як всередині двигуна, так і зовні. Вал насоса приводиться в рух від колінчастого або розподільного вала. В окремих випадках можуть приводитися від спеціального проміжного вала. Масляні насоси можуть бути односекційними або двосекційними. В двосекційних одна секція призначена для подачі масла в масляний радіатор. В насосі має бути редукційний клапан, який обмежує тиск масла на номінальній частоті обертання до 0,3...0,5 МПа в бензинових двигунах і до 0,5...0,7 МПа в дизелів.
Рис. 3. Шестеренні масляні насоси з зовнішнім (а) і внутрішнім (б) зачепленням шестерень:
1 - корпус; 2 - ведуча шестерня; 3 - шпонка; 4 - вал; 5 - ведена шестерня; 6 - вісь; 7 - кулька; 8 - пружина редукційного клапана; 9 - пробка; 10 - кришка; 11- розвантажувальна канавка; 12 - кільце; 13 - ротор; 14 - нагнітальний канал; 15 - всмоктувальний канал; 16 - серповидний виступ; 17- сальник
Подача масляного насоса визначається в залежності від необхідної кількості масла, що циркулює в двигуні. Загальна кількість масла, що надходить з масляного насоса в мастильну систему двигуна за одиницю часу (циркуляційний витрата),
для карбюраторних двигунів: Vц = (9…13) 10ˉ³ Ре;
для дизелів (у разі охолоджуваних поршнів) Vц = (26…34) 10ˉ³ Рв.
Дійсна подача масляного насоса приймається більшою, ніж циркуляційний витрата Vц. Зазвичай для карбюраторних двигунів Vд=(2…4) Vц, а для дизелів Vд = (l, 0…l, 6) Підвищення подачі насоса необхідно для забезпечення нормального тиску масла в системі з урахуванням можливого збільшення зазору в підшипниках. Так як з картера відкачується спінене масло, подача відкачуючих секцій насоса перевищує подачу нагнітають секцій Vотк = (1,5…2,5) Vнагн.
Потужність, необхідна для приводу масляного насоса, Pн = Vроз (Рвих - Рвх )/ηм.н де Vроз - розрахункова подача масляного насоса, Vрас = - Vд / ηн;
Рвих - Рвх - перепад тисків масла в мастильній системі; ηм.н - ККД масляного насоса, ηм.н = 0,85…0, 90.
Масляні фільтри служать для вловлювання з моторного масла твердих частинок продуктів згоряння, металевих частинок зношування, пилу. Розрізняють фільтри грубої та тонкої очистки масла. Фільтри грубої очистки масла включають послідовно перед головною масляною магістраллю і весь потік масла, яке надходить до підшипників, фільтрується. Фільтри тонкої очистки мають значно більший опір фільтруючого елемента і меншу пропускну здатність, їх встановлюють паралельно головній масляній магістралі. Фільтри грубої очистки вловлюють частинки до ЗО мкм, а фільтри тонкої очистки до 1 мкм. Найбільш якісне очищення масла досягається при проходженні всього масла крізь фільтр тонкої очистки (повнопоточне очищення). Тому повнопоточні фільтри (рис.4) набули останнім часом великого поширення, особливо на двигунах легкових автомобілів. В якості масляних фільтрів можуть використовуватись центрифуги. Вони забезпечують високу якість очищення. Розмір частинок, які вони пропускають не перевищує 0,5... 1 мкм.
Рис. 4. Повнопоточний масляний фільтр:
1 - корпус; 2 - перепускний клапан; 3 - пружина перепускного клапана; 4 - центральна порожнина; 5 - зовнішня порожнина; 6 - різьбовий отвір; 7 - протидренажний клапан; 8 - впускні отвори; 9 - прокладка; 10 - паперовий фільтруючий елемент
У підшипниках колінчастого вала повинно забезпечуватись рідинне тертя, коли тертьові поверхні розділені шаром масла. Таке тертя виникає внаслідок ефекту утворення гідродинамічного клину при відносному переміщенні циліндричних поверхонь з достатньо високою швидкістю. Масло в підшипник надходить під надлишковим тиском і затягується валом, що обертається. Максимальний тиск створюється в зоні найменшого зазору. Тому вал із збільшенням частоти обертання намагається зайняти таке положення, коли його вісь наближається до центра підшипника.
При роботі двигуна в його картер через нещільності деталей поршневої групи попадають продукти згоряння і паливна пара. Взаємодіючи з розпиленим нагрітим маслом ці речовини сприяють утворенню піни та різних відкладень. Крім того, проникаючи в картер, вони створюють в ньому підвищений тиск, і масло може витікати з двигуна через ущільнення.
Для видалення картерних газів в двигунах застосовується примусова система вентиляції картера закритого типу. Вона забезпечує відсмоктування картерних газів у порожнину повітряного фільтра або у впускний колектор.