
- •От редактора перевода
- •Предисловие
- •Благодарности
- •Введение
- •Хромосомы
- •Клеточный цикл
- •Мейоз и образование гамет
- •Строение хромосом
- •Наследование одиночных признаков
- •Независимая сегрегация и независимое комбинирование
- •Связь между генами и хромосомами
- •Рекомбинация
- •Связь между генами и белками
- •Гены и ДНК
- •Перенос генетической информации в клетке
- •Структура и сохранение геномной ДНК
- •Экспрессия и регуляция генов
- •Глава 1. Молекулы генетического аппарата
- •1.1. Структура и поведение ДНК
- •в. Альтернативные формы двойной спирали ДНК
- •г. Размер молекул ДНК
- •д. Разнообразие форм ДНК
- •е. Денатурация и ренатурация ДНК
- •ж. Упаковка ДНК в хромосомах
- •1.2. Структура и поведение РНК
- •в. Структура РНК
- •г. Денатурация и ренатурация РНК
- •д. Гибридные спирали ДНК-РНК
- •1.3. Структура белков
- •б. Размер и форма белков
- •в. Чем определяется конформация белка
- •2.1. Репликация ДНК
- •в. Репликация ДНК полуконсервативна
- •д. Ключевые ферменты, участвующие в синтезе ДНК
- •е. Для репликации необходимо раскручивание спирали
- •ж. Инициация образования новых цепей ДНК и их рост в репликативных вилках
- •2.3. Репарация ДНК
- •а. Репарация путем прямого восстановления исходной структуры
- •б. Репарация путем замены модифицированных остатков
- •2.4. Рекомбинация ДНК
- •а. Типы рекомбинации
- •б. Общая рекомбинация между гомологичными молекулами ДНК
- •2.5. Репликация
- •3.1. Основные положения процесса экспрессии генов
- •а. Транскрипция ДНК в РНК
- •г. Правильная инициация трансляции
- •а. Синтез РНК на ДНК-матрице
- •а. Группы генов, кодирующих рРНК и тРНК
- •в. Образование зрелых тРНК из более крупных транскриптов
- •3.4. Генетический код
- •а. Аминокислотная последовательность белков соответствует нуклеотидной последовательности кодирующих их генов
- •б. Соответствие между аминокислотами и их кодонами
- •в. Расшифровка генетического кода
- •г. Избыточность генетического кода
- •3.5. Аппарат трансляции
- •а. Условия инициации
- •б. Элонгация полипептидной цепи
- •б. Трансляция бактериальных мРНК может осуществляться параллельно транскрипции
- •а. Особые модификации мРНК эукариот
- •в. Элонгация и терминация полипептидной цепи
- •3.9. Ингибиторы транскрипции и трансляции
- •а. Ингибирование РНК-полимеразы
- •б. Ингибирование трансляции
- •3.10. Судьба синтезированных белков
- •а. Посттрансляционная модификация полипептидных цепей
- •3.11. Регуляция генной экспрессии
- •в. Регуляция экспрессии лактозного оперона
- •г. Регуляция экспрессии триптофанового оперона
- •Литература
- •Введение
- •Общие работы для всех глав части I
- •Литература к указанным разделам глав
- •Введение
- •Конъюгация
- •Трансдукция
- •Принципы клонирования
- •Концепция рекомбинантной ДНК
- •Важные открытия
- •Бактериальные плазмиды
- •Рестриктирующие эндонуклеазы
- •Глава 4. Инструментарий: ферменты
- •4.1. Нуклеазы
- •в. Нуклеаза Bal 31
- •4.2. Эндонуклеазы рестрикции
- •а. Три типа эндонуклеаз рестрикции
- •б. Типичная рестриктирующая эндонуклеаза типа II
- •в. Различные группы рестриктирующих эндонуклеаз типа II
- •4.3. Фосфомоноэстеразы
- •4.4. Полинуклеотидкиназа
- •4.5. ДНК-лигаза
- •б. Ник-трансляция
- •в. Заполнение брешей
- •а. Полимеризация без матрицы
- •б. Синтез липких концов
- •а. Разносторонность хозяина
- •в. Доступность хозяина
- •г. Некоторые примеры
- •а. Модульная структура плазмид
- •б. Конструирование векторов для отбора
- •в. Плазмидный вектор pBR322
- •е. Векторы, сконструированные на основе фага М13
- •а. Космиды
- •б. Фазмиды
- •5.5. Другие прокариотические системы хозяин-вектор
- •а. Грамотрицательные организмы
- •б. Грамположительные организмы
- •в. Челночные векторы
- •5.6. Эукариотические системы хозяин-вектор: дрожжи
- •а. Универсальность и удобство
- •в. Стабильная трансформация при рекомбинации с дрожжевым геномом
- •5.7. Эукариотические системы хозяин-вектор: животные
- •а. Трансформация клеток животных
- •б. Векторы на основе SV40
- •в. Векторы на основе вируса папилломы крупного рогатого скота
- •г. Векторы на основе ретровирусов
- •а. Общие положения
- •б. Плазмида pTi-A, индуцирующая образование опухолей
- •Глава 6. Средства: конструирование, клонирование и отбор рекомбинантных молекул ДНК
- •6.1. Вставки
- •б. Вставки геномной ДНК
- •в. Синтетические вставки
- •а. Соединение концов
- •б. Клонирование
- •а. Обнаружение нужного клона
- •б. Отжиг с комплементарным полинуклеотидом
- •6.5. Библиотеки
- •а. Геномные библиотеки
- •б. Библиотеки кДНК
- •6.6. Некоторые стратегии клонирования генов и кДНК
- •7.1. Макроструктура клонированной вставки
- •а. Размер вставки
- •б. Картирование сайтов для рестриктирующих эндонуклеаз
- •в. Субклонирование
- •г. Определение положения интересующего нас сегмента во вставке
- •а. Общие принципы
- •б. Химическое секвенирование
- •в. Ферментативное секвенирование
- •б. Структурный анализ
- •а. Молекулярная локализация
- •б. Хромосомная локализация
- •в. Нестабильность при клонировании
- •7.5. Определение числа копий данной последовательности в геноме
- •б. Оценка числа копий по кинетике реассоциации ДНК
- •в. Оценка числа копий с помощью гибридизации в условиях насыщения
- •7.6. Изменение клонированных сегментов: получение мутантов
- •б. Делеционные мутанты
- •в. Инсерционные мутанты
- •г. Точечные мутации
- •7.7. Изучение функций клонированных сегментов ДНК
- •а. Характеристика внутриклеточных транскриптов, соответствующих клонированным сегментам ДНК
- •б. Функциональное тестирование клонированной ДНК
- •а. Выбор системы экспрессии
- •б. Экспрессирующие векторы, используемые в E.coli
- •в. Экспрессирующие векторы, используемые в клетках дрожжей
- •г. Экспрессирующие векторы, используемые в клетках животных
- •Литература
- •Введение
- •Общие работы для всех глав части II
- •Литература к указанным разделам глав
- •Оглавление

338 |
ЧАСТЬ II. ТРИУМФ РЕКОМБИНАНТНЫХ ДНК |
действие со специфическими антителами; при этом необходимо, чтобы используемые методы позволяли различать продукты генов донорных и реципиентных клеток. Например, два белка–продукта генов могут иметь разную электрофоретическую подвижность, как, например, в случае галактокиназ грызунов и приматов. При втором подходе используют гибридизацию между клонированным зондом и набором хромосом гибрида in situ; этот подход имеет уже описанные ограничения. Третий и наиболее общий подход связан с идентификацией искомого гена (или сегмента ДНК) путем отжига соответствующего ДНКили РНК-зонда с ДНК, выделенной из гибридных клеток и перенесенной на нитроцеллюлозный фильтр. Отжиг с эндонуклеазными фрагментами часто позволяет выявить донорный ген во фрагментах, имеющих размеры, типичные для донорного генома, даже в тех случаях, если гены донора и реципиента являются перекрестно гибридизующимися. Поскольку трудно получить гибриды с одной донорной хромосомой, обычно исследуют целый набор гибридных клеток, которые содержат разные донорные хромосомы. Если этот набор достаточно обширен, то присутствие последовательности зонда обычно можно связать с присутствием определенной хромосомы.
Используют также гибридные соматические клетки, содержащие лишь часть определенной хромосомы донора. Например, некоторые линии донорных клеток содержат хромосому с делецией или хромосому, несущую небольшой транслоцированный участок из другой хромосомы, и за прошедшие годы были выделены и охарактеризованы многие линии гибридных клеток, содержащие делетированные или составные донорные хромосомы. Например, с помощью таких гибридных клеток гены тяжелой цепи иммуноглобулина человека были локализованы в положении 32 длинного плеча хромосомы 14 (14q32). Были проанализированы две линии гибридных клеток мыши и человека, каждая из которых содержала одну из пары реципрокных транслокаций между хромосомой 14 и Х-хромо- сомой. Зонд, представляющий собой клонированный ген иммуноглобулина, гибридизовался только с ДНК из гибрида, содержащего часть хромосомы 14, соответствующую q32.
В результате анализа клонов из библиотек, содержащих ДНК одной хромосомы, были получены детальные карты участков индивидуальных хромосом (разд. 6.5.а). Наиболее прямой путь получения таких библиотек состоит в использовании отдельных очищенных хромосом. Другой подход основан на использовании ДНК из гибридных соматических клеток, содержащих только одну донорную хромосому. Из такой библиотеки могут быть отобраны рекомбинанты, содержащие после-
довательности донорной ДНК, по их способности гибридизоваться с видоспецифичными зондами.
в. Нестабильность при клонировании
Как правило, клонированные вставки представляют собой точные реплики геномных последовательностей, однако иногда во время клонирования в этих последовательностях происходят изменения. Несоответствие размеров клонированной вставки и сегмента геномной ДНК чаще всего бывает обусловлено рекомбинациями, делециями или вставками, произошедшими во время клонирования. Нередко наблюдаются вариации в размерах вставки или в ее рестрикционной карте при повторном выделении. Если клонированный фрагмент содержит тандемные повторы, то при расщеплении рекомбинантной ДНК часто получается сложная смесь рестрикционных фрагментов (рис. 7.25). На-
ДНК, окрашенная |
Радиоавтограф |
|
бромистым этидием |
||
|
||
т.п.н. |
|
РИС. 7.25.
Нестабильность рекомбинанта, полученного на основе λ-вектора, во время репликации. Сегмент, содержащий тандемный повтор, клонировали в λ-векторе и после размножения фага из одной очищенной бляшки выделяли ДНК. Далее ДНК гидролизовали с помощью рестриктирующей эндонуклеазы, подвергали электрофорезу и гель окрашивали бромистым этидием (слева). Затем осуществляли перенос ДНК по Саузерну и отжигали ее с клонированным зондом, содержащим такую же повторяющуюся последовательность. Вставка длиной 4,9 т.п.н. содержала большую часть повторяющегося сегмента. Однако с зондом ассоциировали и другие фрагменты ДНК - как более крупные, так и более мелкие (справа). Такие фрагменты содержались в субмолярных количествах и не обнаруживались при окрашивании геля бромистым этидием. Встроенные фрагменты изображены в виде цветных полосок, λ-фрагменты - в виде черных.