
- •От редактора перевода
- •Предисловие
- •Благодарности
- •Введение
- •Хромосомы
- •Клеточный цикл
- •Мейоз и образование гамет
- •Строение хромосом
- •Наследование одиночных признаков
- •Независимая сегрегация и независимое комбинирование
- •Связь между генами и хромосомами
- •Рекомбинация
- •Связь между генами и белками
- •Гены и ДНК
- •Перенос генетической информации в клетке
- •Структура и сохранение геномной ДНК
- •Экспрессия и регуляция генов
- •Глава 1. Молекулы генетического аппарата
- •1.1. Структура и поведение ДНК
- •в. Альтернативные формы двойной спирали ДНК
- •г. Размер молекул ДНК
- •д. Разнообразие форм ДНК
- •е. Денатурация и ренатурация ДНК
- •ж. Упаковка ДНК в хромосомах
- •1.2. Структура и поведение РНК
- •в. Структура РНК
- •г. Денатурация и ренатурация РНК
- •д. Гибридные спирали ДНК-РНК
- •1.3. Структура белков
- •б. Размер и форма белков
- •в. Чем определяется конформация белка
- •2.1. Репликация ДНК
- •в. Репликация ДНК полуконсервативна
- •д. Ключевые ферменты, участвующие в синтезе ДНК
- •е. Для репликации необходимо раскручивание спирали
- •ж. Инициация образования новых цепей ДНК и их рост в репликативных вилках
- •2.3. Репарация ДНК
- •а. Репарация путем прямого восстановления исходной структуры
- •б. Репарация путем замены модифицированных остатков
- •2.4. Рекомбинация ДНК
- •а. Типы рекомбинации
- •б. Общая рекомбинация между гомологичными молекулами ДНК
- •2.5. Репликация
- •3.1. Основные положения процесса экспрессии генов
- •а. Транскрипция ДНК в РНК
- •г. Правильная инициация трансляции
- •а. Синтез РНК на ДНК-матрице
- •а. Группы генов, кодирующих рРНК и тРНК
- •в. Образование зрелых тРНК из более крупных транскриптов
- •3.4. Генетический код
- •а. Аминокислотная последовательность белков соответствует нуклеотидной последовательности кодирующих их генов
- •б. Соответствие между аминокислотами и их кодонами
- •в. Расшифровка генетического кода
- •г. Избыточность генетического кода
- •3.5. Аппарат трансляции
- •а. Условия инициации
- •б. Элонгация полипептидной цепи
- •б. Трансляция бактериальных мРНК может осуществляться параллельно транскрипции
- •а. Особые модификации мРНК эукариот
- •в. Элонгация и терминация полипептидной цепи
- •3.9. Ингибиторы транскрипции и трансляции
- •а. Ингибирование РНК-полимеразы
- •б. Ингибирование трансляции
- •3.10. Судьба синтезированных белков
- •а. Посттрансляционная модификация полипептидных цепей
- •3.11. Регуляция генной экспрессии
- •в. Регуляция экспрессии лактозного оперона
- •г. Регуляция экспрессии триптофанового оперона
- •Литература
- •Введение
- •Общие работы для всех глав части I
- •Литература к указанным разделам глав
- •Введение
- •Конъюгация
- •Трансдукция
- •Принципы клонирования
- •Концепция рекомбинантной ДНК
- •Важные открытия
- •Бактериальные плазмиды
- •Рестриктирующие эндонуклеазы
- •Глава 4. Инструментарий: ферменты
- •4.1. Нуклеазы
- •в. Нуклеаза Bal 31
- •4.2. Эндонуклеазы рестрикции
- •а. Три типа эндонуклеаз рестрикции
- •б. Типичная рестриктирующая эндонуклеаза типа II
- •в. Различные группы рестриктирующих эндонуклеаз типа II
- •4.3. Фосфомоноэстеразы
- •4.4. Полинуклеотидкиназа
- •4.5. ДНК-лигаза
- •б. Ник-трансляция
- •в. Заполнение брешей
- •а. Полимеризация без матрицы
- •б. Синтез липких концов
- •а. Разносторонность хозяина
- •в. Доступность хозяина
- •г. Некоторые примеры
- •а. Модульная структура плазмид
- •б. Конструирование векторов для отбора
- •в. Плазмидный вектор pBR322
- •е. Векторы, сконструированные на основе фага М13
- •а. Космиды
- •б. Фазмиды
- •5.5. Другие прокариотические системы хозяин-вектор
- •а. Грамотрицательные организмы
- •б. Грамположительные организмы
- •в. Челночные векторы
- •5.6. Эукариотические системы хозяин-вектор: дрожжи
- •а. Универсальность и удобство
- •в. Стабильная трансформация при рекомбинации с дрожжевым геномом
- •5.7. Эукариотические системы хозяин-вектор: животные
- •а. Трансформация клеток животных
- •б. Векторы на основе SV40
- •в. Векторы на основе вируса папилломы крупного рогатого скота
- •г. Векторы на основе ретровирусов
- •а. Общие положения
- •б. Плазмида pTi-A, индуцирующая образование опухолей
- •Глава 6. Средства: конструирование, клонирование и отбор рекомбинантных молекул ДНК
- •6.1. Вставки
- •б. Вставки геномной ДНК
- •в. Синтетические вставки
- •а. Соединение концов
- •б. Клонирование
- •а. Обнаружение нужного клона
- •б. Отжиг с комплементарным полинуклеотидом
- •6.5. Библиотеки
- •а. Геномные библиотеки
- •б. Библиотеки кДНК
- •6.6. Некоторые стратегии клонирования генов и кДНК
- •7.1. Макроструктура клонированной вставки
- •а. Размер вставки
- •б. Картирование сайтов для рестриктирующих эндонуклеаз
- •в. Субклонирование
- •г. Определение положения интересующего нас сегмента во вставке
- •а. Общие принципы
- •б. Химическое секвенирование
- •в. Ферментативное секвенирование
- •б. Структурный анализ
- •а. Молекулярная локализация
- •б. Хромосомная локализация
- •в. Нестабильность при клонировании
- •7.5. Определение числа копий данной последовательности в геноме
- •б. Оценка числа копий по кинетике реассоциации ДНК
- •в. Оценка числа копий с помощью гибридизации в условиях насыщения
- •7.6. Изменение клонированных сегментов: получение мутантов
- •б. Делеционные мутанты
- •в. Инсерционные мутанты
- •г. Точечные мутации
- •7.7. Изучение функций клонированных сегментов ДНК
- •а. Характеристика внутриклеточных транскриптов, соответствующих клонированным сегментам ДНК
- •б. Функциональное тестирование клонированной ДНК
- •а. Выбор системы экспрессии
- •б. Экспрессирующие векторы, используемые в E.coli
- •в. Экспрессирующие векторы, используемые в клетках дрожжей
- •г. Экспрессирующие векторы, используемые в клетках животных
- •Литература
- •Введение
- •Общие работы для всех глав части II
- •Литература к указанным разделам глав
- •Оглавление

146 |
ЧАСТЬ I. МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ: ОБЗОР |
мРНК
РИС.3.37.
Сборка полипептидной цепи. Кодоны мРНК считываются один за другим в направлении 5'–>3', начиная с ини-
циаторного кодона AUG, который связывается с N-формилметионил-
тРНКFMet. Полипептид синтезируется от N- к С-концу.
|
|
Растущая полипептидная цепь |
|
|
Следующая |
|
|
тРНК, |
|
|
несущая |
|
|
аминокислоту |
Р-участок |
А-участок |
лишь если карбоксильный конец растущей полипеп- |
|
|
тидной цепи находится в активированном состоя- |
|
|
нии. Как мы уже отмечали, необходимая для этого |
|
|
энергия поступает в результате присоединения кар- |
|
|
боксильной группы растущей полипептидной цепи |
|
|
и каждой присоединяемой аминокислоты к тРНК |
|
|
(рис. 3.38). Во-вторых, считывание мРНК начинает- |
|
|
ся с кодона AUG, который обозначает 5'-конец |
|
|
кодирующей последовательности и детерминирует |
|
|
N-концевую аминокислоту синтезируемого поли- |
|
|
пептида (рис. 3.37). При инициации первая и вторая |
|
|
молекулы аминоацил-тРНК спариваются с первыми |
|
|
двумя кодонами мРНК. Далее трансляция продол- |
|
|
жается в направлении 5'–>3' кодон за кодоном до |
|
|
тех пор, пока не достигнет стоп-сигнала, располо- |
|
|
женного сразу же за кодоном, детерминирующим |
|
|
С-концевую аминокислоту. |
РИС. 3.38.
Этапы пептидилтрансферазной реакции. Азот аминогруппы присоединяющейся аминокислоты осуществляет нуклеофильную атаку активированной карбоксильной группы растущей цепи, в результате чего образуется новая пептидная связь.
а. Условия инициации
70S-рибосома способна осуществлять трансляцию последовательности мРНК, но не может инициировать этот процесс. При связывании инициаторных белков IF-1 и IF-2 с 30S-субчастицей происходит диссоциация 70S-рибосомы. 30S-субчастица в комплексе с IF-1 и IF-3 связывает IF-2, GTP и FmetтРНКFMet. Такой полный комплекс связывается с 5'-концом кодирующей последовательности мРНК вблизи кодона AUG (рис. 3.39). Очевидно, IF-2 способен отличить Fmet-тРНКFMet от met-тPHKMMet, и эта специфичность отчасти обеспечивается N-формиль- ной группой, отсутствующей у met-TPHKMMet. Формирование полноценного функционального комплекса инициации завершается ассоциацией 50S-суб- частицы с преинициаторным комплексом. С образо-

3. АППАРАТ ЭКСПРЕССИИ ГЕНОВ И ЕГО ЛОГИКА |
147 |
Рибосома
IF3
IF1
Fmet
Fmet
GTP, IF2
мРНК
GDP + Pi
РИС. 3.39.
События, предшествующие инициации трансляции. При связывании IF-1 и IF-3 с 30S-субчастицей происходит диссоциация 70S-рибосомы. Затем образуется преинициирующий комплекс, состоящий из 30Sсубчастицы, N-формилметинил-тРНКFMet и мРНК. Последующая ассоциация этого комплекса с 50S-субчастицей сопровождается отделением IF-1, IF-2 и IF-3 и гидролизом одной молекулы GTP до GDP.
ванием функциональной 70S-субчастицы отделяют- |
с полипиримидиновым участком, находящимся |
||
ся все три белка инициации. |
вблизи 3'-конца 16S-pPHK (рис. 3.40). Эффектив- |
||
Как узнается первый кодон? Связывание 30S-суб- |
ность инициации существенно зависит от степени |
||
частицы с мРНК находится под строгим контролем |
комплементарности |
между |
последовательностями |
нуклеотидной последовательности, расположенной |
Шайна-Дальгарно и 16S-pPHK и от расстояния |
||
примерно за 10 нуклеотидов до 5'-конца инициатор- |
пурин-богатого участка до кодона AUG. Эта осо- |
||
ного кодона. Взаимодействию способствует компле- |
бенность наряду с другими, о которых будет сказа- |
||
ментарное спаривание этой богатой пуринами по- |
но позднее, и объясняет различия в эффективности |
||
следовательности из пяти-восьми нуклеотидов, на- |
трансляции различных мРНК. |
||
зываемой последовательностью Шайна-Дальгарно, |
Процесс инициации зависит также от вторичной |
||
|
Arg |
Phe |
Белок |
|
Ala |
Ser |
мРНК
16S-pPHK
φ X174: А-белок
Qβ: репликаза
Rl7: А-белок
λ: сrо-белок
РИС. 3.40.
Богатая пуринами последовательность Шайна-Даль- |
16S-pPHK E. coli. |
В нижней части рисунка приведены |
гарно, расположенная до инициирущего кодона AUG, |
типичные последовательности Шайна-Дальгарно в |
|
спаривается с участком, находящимся вблизи 3'-конца |
мРНК некоторых |
бактериофагов. |

148 |
ЧАСТЬ I. МОЛЕКУЛЯРНЫЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ: ОБЗОР |
РИС. 3.41.
Первичная и предполагаемая вторичная структуры 5'-концевой части генома бактериофага MS2. Несколько инициирующих кодонов (в том числе необычный кодон GUG вблизи 5'-конца) оказываются экранированными при внутримолекулярном спаривании оснований. Только кодон AUG (показан стрелкой), находящийся на вершине шпильки, остается доступным и связывается с рибосомами сразу после инфекции. Участок последовательности, начинающийся после кодона AUG, кодирует белок оболочки MS2. Заметим, что последовательность Шайна-Дальгарно, находящаяся перед кодоном AUG в этой модели, также относительно доступна; два остатка G образуют слабые водородные связи с остатками U. (С любезного разрешения W. Fiers.)

3. АППАРАТ ЭКСПРЕССИИ ГЕНОВ И ЕГО ЛОГИКА |
149 |