
- •Оглавление
- •Введение
- •Лекция 1 особенности оптоэлектроники и области ее применения
- •1.1. Зарождение и развитие оптоэлектроники
- •1.2. Достоинства оптоэлектроники
- •1.3. Области применения оптоэлектроники
- •1.4. Оптоэлектронные приборы и их классификация
- •Контрольные вопросы
- •Физические эффекты, лежащие в основе работы оптоэлектронных приборов (часть 1)
- •2.1. Поглощение и рассеяние света
- •2.2. Рекомбинация и излучение света. Вынужденное излучение
- •2.3. Показатель преломления и диэлектрическая проницаемость
- •2.4. Показатель преломления и двойное лучепреломление в диэлектрике
- •2.5. Коэффициент отражения
- •2.6. Полное внутреннее отражение
- •2.7. Фотопроводимость и фотогальванический эффект (внутренний и внешний фотоэффект)
- •Контрольные вопросы
- •Лекция 3 физические эффекты, лежащие в основе работы оптоэлектронных приборов (часть 2)
- •3.1. Электрооптические эффекты
- •3.2. Нелинейные оптические эффекты
- •Генерация второй гармоники
- •3.4. Акустооптический эффект
- •3.5. Другие эффекты
- •Контрольные вопросы
- •Лекция 4 компоненты оптоэлектронных приборов (часть 1)
- •4.1. Основные элементы оптоэлектронного прибора
- •4.2. Источники излучения
- •4.3. Тепловые источники
- •4.4. Светодиоды (электролюминесцентные источники)
- •Светодиоды с антистоксовыми люминофорами
- •4.4. Источники света с электролюминофорами (электролюминесцентные ячейки, конденсаторы)
- •4.5. Лазеры (оптические квантовые генераторы)
- •Контрольные вопросы
- •Лекция 5 компоненты оптоэлектронных приборов (часть 2)
- •5.1. Приемники излучения
- •5.2. Тепловые приемники
- •Термоэлемент
- •Болометр
- •Пироэлектрический приемник
- •Оптико-акустические приемники
- •5.3. Фотоэлектрические приемники
- •Внешний фотоэффект (фотоэлектронная эмиссия)
- •Внутренний фотоэффект
- •Фоторезисторы
- •Фотогальванические элементы
- •Фотовольтаический режим
- •Фотодиодный режим
- •Лавинный фотодиод (лфд)
- •Фотодиоды с поверхностными барьерами
- •Гетерофотодиод
- •Биполярные фототранзисторы, фототиристоры
- •Многоэлементные фотоприемники (матрицы фотоприемников).
- •Лекция 6 компоненты оптоэлектронных приборов (часть 3)
- •6.1. Оптроны
- •Устройство и основные параметры оптронов
- •Резисторные оптопары
- •Диодные оптопары
- •Транзисторные и тиристорные оптопары
- •Применение оптронов
- •6.2. Оптические системы оптоэлектронных приборов
- •Объективы
- •Телескопические системы
- •Конденсор
- •Прожекторные системы
- •Линзовые и зеркальные системы для освещения входной щели в спектральных приборах
- •Оптические системы для преобразования лазерных пучков
- •Направляющие оптические системы
- •6.3. Электронные элементы
- •6.4. Средства вычислительной техники в оптоэлектронных приборах
- •Контрольные вопросы
- •Лекция 7 оптоэлектронные системы с лазерами (часть 1)
- •7.1. Лазеры со сверхкороткими импульсами
- •7.2. Применение лазеров в промышленности
- •Лазерная технология в микроэлектронной промышленности
- •Лазерная закалка
- •Контрольные вопросы
- •Лекция 8 оптоэлектронные системы с лазерами (часть 2)
- •8.1. Лазерные измерительные системы
- •Лазерные системы для измерения скорости потока жидкости или газа
- •Измерение угловой скорости
- •8.2. Лазерные измерительные системы для определения линейных размеров Измерение размеров изделий
- •Измерение расстояний
- •Интерферометрический метод
- •Фазовый метод
- •Импульсный метод
- •8.3. Исследование окружающей среды лазерными методами Лазерное зондирование атмосферы
- •Исследование океана
- •Определение глубины
- •Обнаружение нефтяных загрязнений
- •Обнаружение скоплений фитопланктона
- •8.4. Лазерный управляемый термоядерный синтез (лутс)
- •8.5. Лазеры в военном деле Лазерные дальномеры, высотомеры
- •Целеуказатели, локаторы, навигационные системы
- •Лазерное оружие
- •Использование химических и рентгеновских лазеров
- •Контрольные вопросы
- •Лекция 9 голография и ее применение в оптоэлектронных системах (часть 1)
- •9.1. История развития голографии. Особенности голографии.
- •9.2. Запись голограммы плоской волны и восстановление изображения Запись изображения плоской волны
- •Восстановление изображения плоской волны:
- •9.3. Запись голограммы точечного объекта и восстановление изображения Запись изображения точечного объекта
- •Восстановление изображения точечного объекта
- •Особенности голограммы.
- •Цифровая голограмма
- •9.4. Схемы получения голограмм Двулучевая схема э. Лейта и ю. Упатниекса
- •Запись голограммы при двустороннем освещении предмета
- •Запись габоровой голограммы непрозрачного рассеивающего объекта
- •Запись голограммы изображений предметов
- •Запись голограммы прозрачного объекта
- •Контрольные вопросы
- •Лекция 10 голография и ее применение в оптоэлектронных системах (часть 2)
- •10.1 Толстослойная голограмма
- •10.2. Применение голографии
- •Голографическая интерферометрия
- •Голографическая микроскопия.
- •Голографические оптические элементы
- •Видовые голограммы
- •Контрольные вопросы
- •Волоконно-оптические системы передачи (часть 1)
- •11.1. История развития
- •11.2. Достоинства и применение оптических линий связи
- •11.3. Построение волоконно-оптических систем передачи
- •Контрольные вопросы
- •Лекция 12 волоконно-оптические системы передачи (часть 2)
- •12.1. Структура волоконного световода
- •12.2. Моды в волоконных световодах
- •12.3. Компоненты волоконно-оптических линейных трактов
- •Контрольные вопросы
- •Интегрально-оптические системы
- •13.1. Классификация и применение интегрально-оптических систем
- •13.2. Оптические волноводы
- •Планарный волновод
- •Трехмерные волноводы
- •13.3. Устройства ввода и вывода излучения из волновода
- •Поперечная связь
- •Продольная связь
- •13.4. Направленные ответвители и пассивные элементы Направленные ответвители
- •Интегрально-оптические пассивные элементы - линзы, призмы
- •Интегрально-оптические фокусирующие элементы
- •13.5. Интегрально-оптические модуляторы
- •Акустооптический модулятор
- •Электрооптический модулятор
- •Магнитооптический модулятор
- •13.6. Активные элементы интегрально-оптических систем
- •Интегрально-оптические фотоприемники
- •Интегрально-оптические источники излучения
- •13.7. Применение интегрально-оптических систем
- •Контрольные вопросы
- •Оптоэлектронные системы передачи, обработки и хранения информации (часть 1)
- •14.1. Оптический процессор
- •14.2. Транспоранты Транспаранты переменной прозрачности
- •Фотохромные материалы.
- •Халькогенидные стекла.
- •Управляемые транспаранты
- •Электрически управляемые транспаранты.
- •Оптически управляемые транспаранты.
- •Транспаранты с фазовой модуляцией (голограммы)
- •14.3. Оптическое преобразование Фурье
- •14.4. Пространственная фильтрация оптических сигналов
- •14.5. Оптические методы распознавания образов
- •Применение оптических систем распознавания образов
- •Контрольные вопросы
- •Оптоэлектронные системы передачи, обработки и хранения информации (часть 2)
- •15.1. Оптоэлектронные запоминающие устройства
- •15.2. Бинарные запоминающие устройства
- •15.3. Голографические запоминающие устройства
- •Голографические зу с последовательной записью
- •Голографическое устройство записи страницы двоичных данных
- •Зу с запоминающей голографической матрицей
- •Запись информации на голограмму в двоичном коде
- •15.4. Перспективы применения оптических методов в вычислительной технике
- •Контрольные вопросы:
- •Заключение
- •Библиографический список
Лавинный фотодиод (лфд)
Л
авинный
фотодиод (ЛФД) состоит из четырех
областей: сильнолегированных n+,
p+,
слаболегированной p
и i
– области (рис. 5.14).
Если увеличить внешнее смещение до величины, когда в запирающем n-p - слое электрическое поле приблизиться к пробивной напряженности (5∙105...1∙106 В/см), то электроны приобретают в таком поле энергию, большую, чем они теряют при столкновениях с атомами решетки. Если полученная электроном энергия превышает энергию ионизации Ei (обычно ΔE < Ei < 1,5 ΔE), то электрон может создать новую электронно-дырочную пару.
При достаточно протяженной области поля возникшие электрон и дырка тоже могут ускориться до энергии Ei и совершить новые ионизации, т. е. будет наблюдаться лавинное нарастание числа носителей заряда.
Это умножение носителей происходит в узкой области вблизи пика электрического поля. Электроны приобретают кинетическую энергию, равную ширине запрещенной зоны. Т.к. вновь появившиеся носители, в свою очередь, участвуют в ударной ионизации, первоначально слабый фототок возрастает лавинообразно. Для ЛФД:
.
(5.1)
где М – коэффициент лавинного умножения. Как видно из (5.1), фототок пропорционален М, но при возрастании коэффициента лавинного умножения растет постоянная времени (время переходного процесса), а, следовательно, уменьшается полоса пропускания. Так, для кремниевого ЛФД при М ≈ 100 постоянная времени увеличивается в 3 раза, во столько же раз уменьшается полоса пропускания.
Для устранения этого недостатка i – область заменяют слаболегированной π - областью. ЛФД с π - областью имеют постоянную времени как у p-i-n –ФД, а коэффициент усиления, как у ЛФД (рис. 5.15).
Фотодиоды с поверхностными барьерами
Ф
отоприемники
с поверхностным барьером Шоттки также
обладают высокими быстродействием и
эффективностью. Подобные барьеры,
образующиеся на контакте металла с
полупроводником (рис. 5.14), могут быть
получены и на материалах, в которых
невозможно создать p-n-переходы.
Если электронный полупроводник контактирует с металлом, у которого работа выхода электронов меньше работы выхода полупроводника, то часть электронов переходит из полупроводника в металл.
Ионизованная донорная примесь в полупроводнике образует слой объемного положительного заряда, обладающий высоким сопротивлением. При включении диода в запирающем направлении (минус на металле) ширина барьера увеличивается в соответствии с формулой
,
где ε - диэлектрическая проницаемость; ε0 - электрическая постоянная; Uk - контактная разность потенциалов; U - внешнее напряжение; ND - концентрация доноров.
Е
сли
ND
=
1017
см-3,
то при напряжении в несколько вольт d
= 10-5
см. Тонкий слой металла толщиной 10-6
см, может быть нанесен на полупроводник
методом вакуумного распыления. Свет
направляют на кристалл сквозь эту почти
прозрачную пленку.
Чтобы предупредить сильное отражение света от поверхности диода, на нее наносят просветляющее покрытие, например пленку сульфида цинка с коэффициентом преломления 2,3 для λ = 0,63 мкм. Толщину пленки устанавливают такой, чтобы при интерференции лучей, отраженных от ее границ, получался минимум, т.е. чтобы отражение отсутствовало для лучей данной длины волны λ.
Лавинное умножение фотоносителей получено как в p-n-переходах, так и в поверхностных барьерах (рис. 5.15).