
- •1.Эффективность вычислений. Основные понятия и определения.
- •2. Алгоритм. Основные понятия и определения.
- •3. Семантическая теория программ.
- •4. Схемы программ.
- •5. Способы задания алгоритмов.
- •6. Универсальные модели алгоритмов.
- •7. Понятийные средства спецификации программ.
- •8. Основные требования к спецификации программ.
- •9. Спецификации в жизненном цикле программ.
- •10. Методы спецификации программ.
- •1. Табличные средства.
- •2. Равенства и подстановки.
- •3. Логические средства и аксиоматические описания.
- •4. Графовые средства: графы, сети, диаграммы.
- •5. Конечно-автоматные диаграммы.
- •6 Синтаксические диаграммы.
- •7. Сети Петри.
- •11. Графические методы спецификации.
- •12.Автоматное преобразование информации
- •13. Основные понятия и определения теории конечных автоматов
- •14.Способы задания конечных автоматов.
- •15. Конечный автомат как модель «реагирующей системы».
- •16. Конечный автомат как модель протокола передачи сообщений в сетях.
- •17. Конечный автомат как модель взаимодействия процессов.
- •18. Автоматы Мура и Милли.
- •19. Примеры конечных автоматов.
- •20. Программная и аппаратная реализация конечных автоматов.
- •21. Сети Петри: принципы построения.
- •22. Теория комплектов.
- •Структура сети Петри.
- •24. Графы сети Петри.
- •25.Аналитическое и графическое представление сети Петри.
- •26. Маркировка сети Петри.
- •27.Выполнение сети Петри.
- •28. Пространство состояний сети Петри.
- •31. Сети Петри как аппарат для моделирования систем
- •32. Одновременность и конфликт сети Петри.
- •33. Моделирование аппаратного обеспечения сетями Петри
- •34.Моделирование программного обеспечения сетями Петри
- •35.Параллелизм в сетях Петри.
- •36,48 Моделирование дискретных процессов сетями Петри.
- •37. Безопасность сетей Петри
- •38.Ограниченность сети Петри
- •39.Тупики в сетях Петри.
- •40. Достижимость в сети Петри. См. Билет 29
- •41. Дерево достижимости в сетях
- •42. Анализ сетей Петри
- •47. Матричное представление сетей Петри.
- •50. Недостатки классических сетей Петри.
- •1.Эффективность вычислений. Основные понятия и определения. 1
32. Одновременность и конфликт сети Петри.
Одной из особенностей сетей Петри и их моделей является параллелизм или одновременность. В модели сети Петри два разрешенных взаимодействующих события могут происходить независимо друг от друга, но при необходимости их легко синхронизировать. Т.о. сети Петри представляются идеальными для моделирования систем с распределенным управлением, в которых несколько процессов выполняются одновременно.
Другая важная особенность сетей Петри - их асинхронная природа. В сети Петри отсутствует измерение времени или течение времени. Структура сетей такова, что содержит в себе информацию для определения возможных последовательностей событий. В этих моделях нет никакой информации, связанной с количеством времени, необходимым для выполнения событий.
Выполнение сети Петри рассматривается как последовательность дискретных событий. Обычно запуск перехода рассматривается как мгновенное событие, занимающее нулевое время и одновременное возникновение двух событий невозможно. Моделируемое таким образом событие называется примитивным, примитивные события мгновенны и неодновременны.
Непримитивными называются события, длительность которых отлична от нуля. Однако это не приводит к возникновению проблем при моделировании систем. Непримитивное событие может быть представлено в виде двух примитивных: "начало непримитивного события", "конец непримитивного события" и условия "непримитивное событие происходит", т.е. в следующем виде:
В сетях Петри предложено представлять непримитивные события в виде прямоугольника (рис. б), а примитивные события планками. Прямоугольник может иметь существенное значение при моделировании сложных систем на нескольких иерархических уровнях, т.к. он позволяет выделить в отдельный элемент сети целые подсети. Наличие прямоугольника в некотором смысле подобно понятию подпрограммы в блочном программировании и может оказаться в некоторых приложениях весьма полезным.
Если в какой либо момент времени разрешено более одного перехода, то любой из них может стать "следующим". Выбор запускаемого перехода осуществляется недетерминированным образом, то есть случайно и зависит от воли моделирующего систему. Недетерминорованность и неодновременность запусков переходов в моделировании параллельной системы показывается двумя ситуациями.
Одна из них представлена на рисунке 1. В этой ситуации два разрешённых перехода tj и tk не влияют друг на друга. В число возможных последовательностей событий входит последовательность, в которой первым срабатывает один переход, и последовательность, в которой первым срабатывает другой переход. Эти два перехода могут быть запущены в любом порядке, это называется недетерминированностью и неодновременностью, переход tk может быть запущен в любом порядке, но обязательно при помощи маркеров в обеих позициях. Это называется одновременностью. Другая ситуация, в которой одновременное выполнение затруднено, и которая характеризуется невозможностью одновременного запуска показана на рисунке 2. Здесь переходы tj и tk находятся в конфликте, так как запуск одного из них удаляет маркер из рi и тем самым завершает другой переход. Эта ситуация называется конфликтом и в моделируемых системах отображает борьбу за общие ресурсы.
Существуют определённые области, в которых сети Петри являются идеальным инструментом для моделирования: это области, в которых события происходят синхронно и независимо. Одной из таких областей является использование сетей Петри для моделирования аппаратного и программного обеспечения ЭВМ и других систем.