Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora_TAU.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.6 Mб
Скачать

29.Построение желаемой логарифмической характеристики Построение желаемых логарифмических амплитудно-частотных и фазочастотных характеристик

При построении желаемой ЛАЧХ целесообразно выделить три области частот: область низких, область средних и область высоких частот.

В интервале низких частот вид ЛАЧХ указывает на порядок астатизма и статическую точность системы. При частотах, меньших первой сопрягающей частоты ЛАЧХ имеет наклон 20υ дб/дек, где υ - порядок астатизма системы.

Интервал средних частот лежит между первой и второй сопрягающими частотами, т.е.

ω ≤ ωср ≤ ω,

ω = (3 - 4) ∙ωср, , (1.23) ,

где tр - время регулирования квазистационарной системы;

β - коэффициент, зависящий от величины перерегулирования σ%, определяемый по графику зависимости (рис.3).

Рисунок 3 - График зависимости коэффициента β (σ %)

Выбираем коэффициент β = 3.2, тогда

с-1;

ω= 3,5 ωср = 3,5 13,39 = 46,89 ≈ 47 с-1;

ω = 4,17 ≈ 4 с-1.

Таким образом, определив все частоты, строим желаемую ЛАЧХ из таких соображений:

В области низких частот наклон ЛАЧХ -40дб/дек, в области средних частот наклон ЛАЧХ имеет -20 дб/дек, в области высоких частот наклон ЛАЧХ совпадает с наклоном ЛАЧХ нескрорректированной системы, поскольку на переходной процесс она большого влияния не оказывает.

По виду желаемой ЛАЧХ строим фазочастотные характеристики.

30.Нелинейные сау. Основные отличия нелинейных систем от линейных.

Определение и особенности нелинейных систем.

Нелинейной называется такая САУ, у которой зависимость между входными и выходными переменными одного или нескольких элементов описывается нелинейными уравнениями.

Все реальные элементы и системы, строго говоря нелинейны, и к понятию линейной системы приходят путем линеаризации. Но на практике встречаются такие нелинейные элементы, к которым операция линеаризации по малому отклонению не применима. Такие нелинейности называют существенными. На рис.7.1. приведены примеры таких нелинейностей. На рис.7.1а показана характеристика идеального реле, на рис.7.2б – характеристика с зоной насыщения, на рис.7.1в – нелинейная характеристика типа “модуль”.

Нелинейные системы, по сравнению, с линейными обладают целым рядом особенностей.

Прежде всего, к нелинейным дифференциальным уравнениям не применим принцип суперпозиции. Нелинейные дифференциальные уравнения не имеют каких – либо общих методик решения. Для исследования нелинейных дифференциальных уравнений нельзя использовать аппарат преобразований Лапласа и Фурье.

a б в

Рис.7.1. Примеры существенных нелинейностей.

Особенностью нелинейных систем является возникновение в них, при некоторых начальных условиях, гармонических колебаний с определенной амплитудой и частотой, так называемых предельных циклов. Если предельный цикл устойчив, т.е. к нему сходятся все траектории сверху и снизу в определенном диапазоне начальных условий, то он называется автоколебаниями. Амплитуда и частота автоколебаний зависят только от параметров системы.

Основные различия между линейными и нелинейными системами.

1.В лин. системах применим метод суперпозиции.

В нелин. Системах метод суперпозиции не применим.

2. Устойчивость лин. систем зависит только от свойств самой системы и не зависит от величины самого сигнала.

В нелинейных системах устойчивость определяется параметрами системы, нач. условиями и амплитудой входного сигнала. Устойчивость нелинейной системы оценивают по 3 признакам:

– устойчивость в малом – это устойчивость системы при бесконечно малых отклонениях от исходного режима. При чуть больших отклонениях система становится неустойчивой.

– система устойчива в большом, если система устойчива при бесконечно больших отклонениях, которые возможны в данной системе. При малых система может быть неустойчива.

– система устойчива в целом, если система устойчива при любых воздействиях.g(t)=, ;<-уст.в «малом»;>-в «большом»;  неограниченна в целом.

3. В линейных системах при отсутствии внешнего воздействия никогда не возникает установившееся колебание (автоколебание). Данное колебание возможно только в системе, которая находиться на границе устойчивости, но данное состояние неустойчивое. Малое изменение параметров системы может привести к неустойчивому, либо к устойчивому состоянию.

В нелинейных системах характерны автоколебания которые вызваны только свойствами самой системы, т.е. не являются реакцией на внешнее воздействие. При этом может быть несколько автоколебательных режимов с различной амплитудой и частотой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]