
- •Основные понятия и определения тау.
- •2.Принципы управления.
- •3. Классификация сау.
- •4.Системы автоматической стабилизации, программного управления и следящие сау.
- •Системы автоматический стабилизации
- •Системы программного регулирования
- •Следящие системы
- •5.Типовая структура сау.
- •6.Математическое описание сау. Дифференциальные уравнения.
- •7.Математическое описание сау. Преобразование Лапласа. Понятие передаточной функции системы.
- •8.Математическое описание сау. Частотные характеристики сау.
- •9.Математическое описание сау. Логарифмические частотные характеристики.
- •10.Математическое описание сау. Временные характеристики.
- •11.Типовые динамические звенья. Интегрирующее звено.
- •18.Построение логарифмических характеристик последовательно соединенных звеньев.
- •19.Устойчивость сау. Понятие устойчивости.
- •20.Критерии устойчивости. Критерий Гурвица.
- •21.Критерии устойчивости. Критерий Найквиста.
- •22.Критерии устойчивости. Критерий Михайлова.
- •23.Определение устойчивости по логарифмическим характеристикам
- •24.Запасы устойчивости
- •25.Точность сау. Основные понятия.
- •26.Статические и астатические сау.
- •27.Качество регулирования. Основные показатели качества регулирования.
- •28.Коррекция сау
- •29.Построение желаемой логарифмической характеристики Построение желаемых логарифмических амплитудно-частотных и фазочастотных характеристик
- •30.Нелинейные сау. Основные отличия нелинейных систем от линейных.
- •31.Основные типовые нелинейности
- •32.Правила преобразования структурных схем нелинейных сау
- •33.Абсолютная устойчивость. Критерий устойчивости Попова
- •34.Метод гармонического баланса
- •35.Понятие автоколебаний. Устойчивость автоколебаний.
- •36.Дискретные сау. Основные понятия. Квантование.
- •37.Импульсные сау. Понятие модуляции.
- •38.Математическое описание исау. Z-преобразование. Дискретное преобразование Лапласа.
- •Системы автоматический стабилизации
- •Системы программного регулирования
- •Следящие системы
29.Построение желаемой логарифмической характеристики Построение желаемых логарифмических амплитудно-частотных и фазочастотных характеристик
При построении желаемой ЛАЧХ целесообразно выделить три области частот: область низких, область средних и область высоких частот.
В интервале низких частот вид ЛАЧХ указывает на порядок астатизма и статическую точность системы. При частотах, меньших первой сопрягающей частоты ЛАЧХ имеет наклон 20υ дб/дек, где υ - порядок астатизма системы.
Интервал средних частот лежит между первой и второй сопрягающими частотами, т.е.
ω1к ≤ ωср ≤ ω2к,
ω2к
= (3 - 4) ∙ωср,
,
(1.23)
,
где tр - время регулирования квазистационарной системы;
β - коэффициент, зависящий от величины перерегулирования σ%, определяемый по графику зависимости (рис.3).
Рисунок 3 - График зависимости коэффициента β (σ %)
Выбираем коэффициент β = 3.2, тогда
с-1;
ω2к = 3,5 ωср = 3,5 13,39 = 46,89 ≈ 47 с-1;
ω1к = 4,17 ≈ 4 с-1.
Таким образом, определив все частоты, строим желаемую ЛАЧХ из таких соображений:
В области низких частот наклон ЛАЧХ -40дб/дек, в области средних частот наклон ЛАЧХ имеет -20 дб/дек, в области высоких частот наклон ЛАЧХ совпадает с наклоном ЛАЧХ нескрорректированной системы, поскольку на переходной процесс она большого влияния не оказывает.
По виду желаемой ЛАЧХ строим фазочастотные характеристики.
30.Нелинейные сау. Основные отличия нелинейных систем от линейных.
Определение и особенности нелинейных систем.
Нелинейной называется такая САУ, у которой зависимость между входными и выходными переменными одного или нескольких элементов описывается нелинейными уравнениями.
Все реальные элементы и системы, строго говоря нелинейны, и к понятию линейной системы приходят путем линеаризации. Но на практике встречаются такие нелинейные элементы, к которым операция линеаризации по малому отклонению не применима. Такие нелинейности называют существенными. На рис.7.1. приведены примеры таких нелинейностей. На рис.7.1а показана характеристика идеального реле, на рис.7.2б – характеристика с зоной насыщения, на рис.7.1в – нелинейная характеристика типа “модуль”.
Нелинейные системы, по сравнению, с линейными обладают целым рядом особенностей.
Прежде всего, к нелинейным дифференциальным уравнениям не применим принцип суперпозиции. Нелинейные дифференциальные уравнения не имеют каких – либо общих методик решения. Для исследования нелинейных дифференциальных уравнений нельзя использовать аппарат преобразований Лапласа и Фурье.
a б в
Рис.7.1. Примеры существенных нелинейностей.
Особенностью нелинейных систем является возникновение в них, при некоторых начальных условиях, гармонических колебаний с определенной амплитудой и частотой, так называемых предельных циклов. Если предельный цикл устойчив, т.е. к нему сходятся все траектории сверху и снизу в определенном диапазоне начальных условий, то он называется автоколебаниями. Амплитуда и частота автоколебаний зависят только от параметров системы.
Основные различия между линейными и нелинейными системами.
1.В лин. системах применим метод суперпозиции.
В нелин. Системах метод суперпозиции не применим.
2. Устойчивость лин. систем зависит только от свойств самой системы и не зависит от величины самого сигнала.
В нелинейных системах устойчивость определяется параметрами системы, нач. условиями и амплитудой входного сигнала. Устойчивость нелинейной системы оценивают по 3 признакам:
– устойчивость в малом – это устойчивость системы при бесконечно малых отклонениях от исходного режима. При чуть больших отклонениях система становится неустойчивой.
– система устойчива в большом, если система устойчива при бесконечно больших отклонениях, которые возможны в данной системе. При малых система может быть неустойчива.
– система устойчива в целом, если система устойчива при любых воздействиях.g(t)=, ;<-уст.в «малом»;>-в «большом»; неограниченна в целом.
3. В линейных системах при отсутствии внешнего воздействия никогда не возникает установившееся колебание (автоколебание). Данное колебание возможно только в системе, которая находиться на границе устойчивости, но данное состояние неустойчивое. Малое изменение параметров системы может привести к неустойчивому, либо к устойчивому состоянию.
В нелинейных системах характерны автоколебания которые вызваны только свойствами самой системы, т.е. не являются реакцией на внешнее воздействие. При этом может быть несколько автоколебательных режимов с различной амплитудой и частотой.