
- •Объекты управления.
- •Обобщенная структурная схема объекта управления
- •Объекты с самовыравниванием:
- •Объекты без самовыравнивания.
- •Объекты с запаздыванием.
- •Типовая структурная схема трёхкоординатной сау.
- •3. Классификация сау.
- •Фундаментальные принципы управления. Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •1. Принцип разомкнутого управления
- •Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •5. Фундаментальные принципы управления. Принцип обратной связи (принцип управления по отклонению контролируемой функции от входного воздействия, принцип Ползунова-Уатта).
- •6. Принцип обратной связи.
- •7. Фундаментальные принципы управления. Комбинированный принцип управления.
- •8. Статические и астатические сау.
- •9. Статические характеристики звеньев и объектов сау. Динамические характеристики систем управления.
- •Математическое описание сау.
- •11. Типовые входные воздействия.
- •12. Частотные характеристики объектов и систем управления.
- •13. Типовые динамические звенья сау: безынерционное звено, апериодическое звено 1-го порядка.
- •14. Инерционное звено 2-го порядка.
- •15. Логарифмические частотные характеристики колебательного звена.
- •20. Уравнение статики и уравнение динамики сау.
- •21. Критерий устойчивости Гурвица.
- •22. Методика анализа устойчивости сау.
- •23. Передаточные функции систем различной структуры.
- •Последовательное соединение звеньев.
- •Параллельное включение звеньев.
- •Встречно-параллельное соединение динамических звеньев.
- •3.2. Контур с положительной обратной связью.
- •24. Преобразование структурных схем.
- •25. Теоремы а.М. Ляпунова, определение критерия устойчивости, необходимое условие устойчивости Рауса, формулировка критерия устойчивости Гурвица. Теоремы а.М. Ляпунова.
- •Критерии устойчивости сау.
- •26. Методика построения логарифмической частотной характеристики сау: статические системы.
- •27. Передаточные и переходные функции сау.
- •28. Методика построения логарифмической частотной характеристики сау: астатические системы.
- •29. Принцип аргумента.
- •30. Критерий устойчивости Найквиста для систем с неустойчивой разомкнутой цепью.
- •3 1. Анализ качества сау в статике.
- •32. Методика построения логарифмической частотной характеристики контура с отрицательной обратной связью.
- •33. Критерий Найквиста, сформулированный я.З.Цыпкиным. Формулировка критерия Найквиста для лчх. Формулировка я.З. Цыпкина
- •Критерий Найквиста для лчх
- •34. Критерий Найквиста: причины широкого применения в инженерной практике, критерий Найквиста для систем, устойчивых в разомкнутом состоянии.
- •1. Система, устойчивая в разомкнутом состоянии
- •35. Методика построения логарифмической частотной характеристики сау: параллельное соединение звеньев.
- •36. Анализ качества сау в динамике.
- •Прямые показатели качества сау
- •37. Запасы устойчивости. Запасы устойчивости
- •38. Анализ качества сау. Исследование качества сау
- •Методы исследования качества сау
- •39. Критерий Найквиста для систем, разомкнутые цепи которых кроме полюсов с отрицательными вещественными частями имеют полюса на мнимой оси.
- •40. Критерий Найквиста для систем, разомкнутая цепь которых устойчива.
- •Система, устойчивая в разомкнутом состоянии
- •41. Передаточная функция встречно-параллельного соединения звеньев. Правило определения передаточных функций замкнутых сау.
- •3.1. Контур с отрицательной обратной связью.
- •3.2. Контур с положительной обратной связью.
- •42. Расчёт линейных непрерывных сау по заданной точности в установившемся режиме работы.
- •1. Расчет установившегося режима работы сар по заданным коэффициентам рассогласования (ошибки)
- •43. Алгоритм построения желаемой лчх по методу в.В.Солодовникова.
- •44. Синтез корректирующей цепи последовательного типа.
- •45. Приближённый метод построения лчх корректирующей отрицательной обратной связи.
- •46. Типовые регуляторы: пд-регулятор.
- •Реализация пд-регулятора
- •47. Типовые регуляторы: пи-регулятор.
- •Реализация пи-регулятора
- •48. Типовые регуляторы: пид-регулятор.
- •Реализация пид-регулятора
- •49. Расчёт систем комбинированного управления: расчёт компенсирующих устройств по каналу возмущения.
- •50. Расчёт систем комбинированного управления: расчёт систем с компенсацией динамической ошибки по каналу управления.
- •51. Этапы проектирования сау. Схемы включения корректирующих устройств.
- •52. Качество работы цифровых сау. Три типа желаемых лпчх цифровых систем.
- •53. Дискретное преобразование Лапласа. Z-преобразование. Основные свойства и теоремы z-преобразования. Дискретное преобразование Лапласа
- •Основные свойства и теоремы z-преобразования
- •4. Критерий Гурвица.
- •55. Методы построения лпчх исходных (нескорректированных) цифровых систем. Учёт постоянного временного запаздывания в сау с цвм. Построение лпчх исходной (нескорректированной) цифровой сау
- •Учет постоянного временного запаздывания
- •61. Особенности синтеза систем управления с эвм в качестве управляющего устройства.
12. Частотные характеристики объектов и систем управления.
Частотными называются характеристики звеньев (систем) в форме графиков или таблиц, отображающие изменение амплитуды и фазы выходной функции (т.е. реакцию) звеньев или систем относительно синусоидального входного воздействия в установившемся режиме при изменении частоты от 0 до .
Для линейных систем справедлив ПРИНЦИП СУПЕРПОЗИЦИИ, который можно сформулировать следующим образом.
Реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций на каждое воздействие в отдельности. |
Это позволяет ограничиться изучением систем только с одним входом.
В качестве входных воздействий были выбраны гармонические воздействия в виду нескольких обстоятельств
реально встречающиеся воздействия, как правило, могут быть представлены в виде суммы гармоник различных частот (разложение Фурье)
в установившихся режимах гармонические сигналы передаются линейными элементами и системами без искажений
обычно не возникает затруднений в экспериментальном исследовании поведения систем .
Функцию W( j) можно представить в виде
где
амплитудно-частотная
функция (график АЧХ);
- фазо-частотная функция (график ФЧХ).
Если
то
На комплексной
плоскости частотную передаточную
функцию W(jι)
определяет вектор
,
длина которого равна А(ι),
а аргумент (угол, образованный этим
вектором с действительной положительной
полуосью) - (ι).
Кривую, которую описывает конец этого
вектора при изменении частоты от 0 до
(иногда от -
до ),
называют амплитудно-фазовой частотной
характеристикой (АФХ).
L ()= 20 lg A()= 20 lgW( j)- логарифмическая амплитудная частотная функция (график ЛАЧХ).
ЛФЧХ называют график зависимости фазового сдвига функции () от логарифма частоты lg.
Единицей измерения L() является децибел, а единицей логарифма частоты в ЛЧХ – декада. Декадой называют интервал, на котором частота изменяется в 10 раз. Ось ординат при построении ЛЧХ проводят через произвольную точку оси абсцисс, а не через точку =0. Частоте =0 соответствует бесконечно удалённая точка lg- при 0.
Белл-логарифмическая единица десятикратного увеличения мощности. Так как А()- отношение напряжений, токов, перемещений, то увеличение этого отношения в 10 раз будет соответствовать увеличению отношения мощностей в 100 раз, что соответствует 2 Белам или 20 дБ.
1мВт – базовая мощность в устройствах связи.
13. Типовые динамические звенья сау: безынерционное звено, апериодическое звено 1-го порядка.
14. Инерционное звено 2-го порядка.
Такие звенья описываются дифференциальным уравнением вида
Преобразуем
по Лапласу это уравнение
или
Определим передаточную функцию звена
где
T – постоянная времени, с;
– коэффициент затухания (безразмерная величина);
k – передаточный коэффициент.
В зависимости от величины классифицируются звенья второго порядка по видам:
(1) (2) (3) (4) (5)
-1 0 1
1-неустойчивое апериодическое звено;
2-неустойчивое колебательное звено;
3-консервативное звено;
4-колебательное звено;
5-апериодическое звено II порядка.
>1 – апериодическое звено II-го порядка.
Характеристическое
уравнение звена
имеет корни действительные и отрицательные
данное звено можно представить в виде
двух последовательно соединенных
звеньев с различными постоянными
времени:
тогда при T1>T2
переходная функция звена имеет вид
Переходная характеристика:
=1,
оба корня одинаковые и отрицательные.
Передаточная функция преобразуема к двум последовательно соединенным апериодическим звеньям с одинаковыми постоянными времени.
W(p)=
,переходная функция h(t)=1-(1+t)e-t
,где =1/T.
0<<1,
корни разные, комплексно-сопряженные, с отрицательной вещественной частью; КОЛЕБАТЕЛЬНОЕ ЗВЕНО.
Переходная функция звена имеет вид
где
при малых ,
- имеет физический смысл собственной
частоты колебаний,
при малых .
Период собственных
колебаний
при малых .
Ч
ем
меньше ,
тем выше колебательность процесса:
=0,
такое звено имеет специальное название – КОНСЕРВАТИВНОЕ ЗВЕНО.
Передаточная
функция звена:
.
Решение дифференциального уравнения имеет вид
где
-1<<0,
Это неустойчивое колебательное звено.
<-1.
= -1; отличается от случая 6 лишь тем, что корни одинаковые.