
- •Объекты управления.
- •Обобщенная структурная схема объекта управления
- •Объекты с самовыравниванием:
- •Объекты без самовыравнивания.
- •Объекты с запаздыванием.
- •Типовая структурная схема трёхкоординатной сау.
- •3. Классификация сау.
- •Фундаментальные принципы управления. Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •1. Принцип разомкнутого управления
- •Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •5. Фундаментальные принципы управления. Принцип обратной связи (принцип управления по отклонению контролируемой функции от входного воздействия, принцип Ползунова-Уатта).
- •6. Принцип обратной связи.
- •7. Фундаментальные принципы управления. Комбинированный принцип управления.
- •8. Статические и астатические сау.
- •9. Статические характеристики звеньев и объектов сау. Динамические характеристики систем управления.
- •Математическое описание сау.
- •11. Типовые входные воздействия.
- •12. Частотные характеристики объектов и систем управления.
- •13. Типовые динамические звенья сау: безынерционное звено, апериодическое звено 1-го порядка.
- •14. Инерционное звено 2-го порядка.
- •15. Логарифмические частотные характеристики колебательного звена.
- •20. Уравнение статики и уравнение динамики сау.
- •21. Критерий устойчивости Гурвица.
- •22. Методика анализа устойчивости сау.
- •23. Передаточные функции систем различной структуры.
- •Последовательное соединение звеньев.
- •Параллельное включение звеньев.
- •Встречно-параллельное соединение динамических звеньев.
- •3.2. Контур с положительной обратной связью.
- •24. Преобразование структурных схем.
- •25. Теоремы а.М. Ляпунова, определение критерия устойчивости, необходимое условие устойчивости Рауса, формулировка критерия устойчивости Гурвица. Теоремы а.М. Ляпунова.
- •Критерии устойчивости сау.
- •26. Методика построения логарифмической частотной характеристики сау: статические системы.
- •27. Передаточные и переходные функции сау.
- •28. Методика построения логарифмической частотной характеристики сау: астатические системы.
- •29. Принцип аргумента.
- •30. Критерий устойчивости Найквиста для систем с неустойчивой разомкнутой цепью.
- •3 1. Анализ качества сау в статике.
- •32. Методика построения логарифмической частотной характеристики контура с отрицательной обратной связью.
- •33. Критерий Найквиста, сформулированный я.З.Цыпкиным. Формулировка критерия Найквиста для лчх. Формулировка я.З. Цыпкина
- •Критерий Найквиста для лчх
- •34. Критерий Найквиста: причины широкого применения в инженерной практике, критерий Найквиста для систем, устойчивых в разомкнутом состоянии.
- •1. Система, устойчивая в разомкнутом состоянии
- •35. Методика построения логарифмической частотной характеристики сау: параллельное соединение звеньев.
- •36. Анализ качества сау в динамике.
- •Прямые показатели качества сау
- •37. Запасы устойчивости. Запасы устойчивости
- •38. Анализ качества сау. Исследование качества сау
- •Методы исследования качества сау
- •39. Критерий Найквиста для систем, разомкнутые цепи которых кроме полюсов с отрицательными вещественными частями имеют полюса на мнимой оси.
- •40. Критерий Найквиста для систем, разомкнутая цепь которых устойчива.
- •Система, устойчивая в разомкнутом состоянии
- •41. Передаточная функция встречно-параллельного соединения звеньев. Правило определения передаточных функций замкнутых сау.
- •3.1. Контур с отрицательной обратной связью.
- •3.2. Контур с положительной обратной связью.
- •42. Расчёт линейных непрерывных сау по заданной точности в установившемся режиме работы.
- •1. Расчет установившегося режима работы сар по заданным коэффициентам рассогласования (ошибки)
- •43. Алгоритм построения желаемой лчх по методу в.В.Солодовникова.
- •44. Синтез корректирующей цепи последовательного типа.
- •45. Приближённый метод построения лчх корректирующей отрицательной обратной связи.
- •46. Типовые регуляторы: пд-регулятор.
- •Реализация пд-регулятора
- •47. Типовые регуляторы: пи-регулятор.
- •Реализация пи-регулятора
- •48. Типовые регуляторы: пид-регулятор.
- •Реализация пид-регулятора
- •49. Расчёт систем комбинированного управления: расчёт компенсирующих устройств по каналу возмущения.
- •50. Расчёт систем комбинированного управления: расчёт систем с компенсацией динамической ошибки по каналу управления.
- •51. Этапы проектирования сау. Схемы включения корректирующих устройств.
- •52. Качество работы цифровых сау. Три типа желаемых лпчх цифровых систем.
- •53. Дискретное преобразование Лапласа. Z-преобразование. Основные свойства и теоремы z-преобразования. Дискретное преобразование Лапласа
- •Основные свойства и теоремы z-преобразования
- •4. Критерий Гурвица.
- •55. Методы построения лпчх исходных (нескорректированных) цифровых систем. Учёт постоянного временного запаздывания в сау с цвм. Построение лпчх исходной (нескорректированной) цифровой сау
- •Учет постоянного временного запаздывания
- •61. Особенности синтеза систем управления с эвм в качестве управляющего устройства.
Принцип управления по возмущению (принцип компенсации, принцип Понселе).
Сущность принципа Понселе заключается в том, что возмущение измеряется и формируется управляющее воздействие по каналу возмущения на объект так, чтобы скомпенсировать влияние возмущения на регулируемую координату.
Регулирующий орган управляется только в функции внешних воздействий F(р) и R(р). Фактическое изменение регулируемой функции у на работу регулятора влиять не будет, т.е. управление осуществляется по разомкнутому циклу.
Y(p)=Yr(p)+Yf(p)=Wp(p)Wor(p)R(p)+[Wkf(p)Wp(p)Wor(p)-Wof(p)]F(p);
при выполнении условия Wp(p)Wor(p)=1 и Wkf(p)Wp(p)Wor(p) -Wof(p)=0 ,
Y(p)=R(p).
Структура автоматической системы принципиально позволяет получить управление без ошибок. Однако практическая реализация такой системы наталкивается на затруднения.
Достоинства:
Возможна полная компенсация действия возмущения.
Компенсирующее устройство не влияет на устойчивость.
Простота регулятора.
Недостатки:
Необходимо сравнительно точно измерять возмущающие воздействия, что не всегда может быть выполнено, так как возмущающие силы обычно не поддаются точному измерению.
Реализация регулятора в общем случае невозможна, так как в передаточной функции Wp(p)=1/Wor(p) порядок числителя, как правило, выше порядка знаменателя.
Регулирование по возмущению может быть использовано лишь для объектов устойчивых.
Компенсируется только измеренное возмущение.
Приборы для измерения возмущений сложные и дорогие.
Такие системы применяются в тех случаях, когда не требуется высокая точность выполнения алгоритма функционирования объекта.
5. Фундаментальные принципы управления. Принцип обратной связи (принцип управления по отклонению контролируемой функции от входного воздействия, принцип Ползунова-Уатта).
Сущность принципа обратной связи заключается в том, что регулятор вступает в работу только тогда, когда между текущим и заданным значениями регулируемой функции появляется рассогласование, и регулятор воздействует на объект таким образом, чтобы свести это рассогласование к нулю или к малой величине.
Принцип внутренне противоречив, ибо прежде чем ликвидировать ошибку необходимо допустить ее возникновение.
В рассматриваемом случае уравнение системы регулирования будет иметь
Если Wp(p) по модулю во всех режимах работы системы сделать достаточно большим [в идеале Wp(jω)], то уu, так как при этом условии Wзf(p) будет стремиться к нулю, а Wзx(p) - к единице. Следовательно, регулирование по отклонению позволяет одновременно уменьшить влияние на систему возмущающих воздействий f и увеличить точность воспроизведения заданного входного воздействия x.
Регулятор вырабатывает в системе изменение y(t), направленное навстречу начальному отклонению, вызвавшему работу регулятора, то есть стремится компенсировать возникшее отклонение. |
Обратные связи в регуляторе или объекте называются местными обратными связями.
Если система
линейная и звенья статические, то в
установившемся режиме
тогда
где обозначим k=kpky
– общий передаточный коэффициент
разомкнутой цепи регулирования.
Уравнение статического
равновесия имеет вид
При увеличении k влияние уменьшается, поэтому достоинством этого принципа регулирования является его универсальность по отношению к возмущениям, а недостатком – склонность системы к неустойчивому режиму работы.
Установившаяся
ошибка регулирования в статической
системе с единичной отрицательной
обратной связью (статическая ошибка)
если k>>1,
то
Достоинства:
Регулирование по отклонению позволяет уменьшить влияние на систему всех возмущающих воздействий;
Увеличивается точность воспроизведения заданного входного воздействия;
На динамические свойства объекта никаких ограничений не накладывается. Следовательно, регулирование по отклонению применимо к любым объектам, в том числе и к неустойчивым;
Отсутствие необходимости замера возмущений, что очень важно с практической точки зрения;
Отсутствие жёстких требований к стабильности характеристик элементов регулятора и объекта.
Недостатки:
Принципиально нельзя получить регулирование без ошибки, так как ошибка
регулирования является сигналом, который управляет регулирующим органом;
Склонность системы к неустойчивому режиму работы.
Управление – фундаментальная философская категория, решающая задачу формирования управляющих воздействий.
Регулирование – производная философская категория, решающая задачу отработки заданных воздействий.
Системы автоматического регулирования (САР) отличаются от систем автоматического управления (САУ) тем, что в последних происходит как формирование (выработка) желаемого поведения объекта на основании цели управления в виде задающих (управляющих) воздействий, так и их отработка в САР происходит лишь их отработка, а сами управляющие воздействия, поступающие на элемент сравнения, считаются заданными.
Теория автоматического регулирования является основой построения первого уровня, а теория автоматического управления – основой всей иерархической структуры информационных процессов управления, необходимых для комплексной автоматизации сложных объектов.
Принцип действия любой САР состоит в том, чтобы обнаружить отклонения регулируемых величин, характеризующих работу машины, или протекание процесса от требуемого режима, и при этом воздействовать на машину или процесс так, чтобы устранить возникшие отклонения.
В теории автоматического регулирования основными являются проблемы устойчивости, управляемости, наблюдаемости, качества переходных процессов, динамической точности, автоколебаний, оптимизации, синтеза и идентификации.