
- •Объекты управления.
- •Обобщенная структурная схема объекта управления
- •Объекты с самовыравниванием:
- •Объекты без самовыравнивания.
- •Объекты с запаздыванием.
- •Типовая структурная схема трёхкоординатной сау.
- •3. Классификация сау.
- •Фундаментальные принципы управления. Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •1. Принцип разомкнутого управления
- •Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •5. Фундаментальные принципы управления. Принцип обратной связи (принцип управления по отклонению контролируемой функции от входного воздействия, принцип Ползунова-Уатта).
- •6. Принцип обратной связи.
- •7. Фундаментальные принципы управления. Комбинированный принцип управления.
- •8. Статические и астатические сау.
- •9. Статические характеристики звеньев и объектов сау. Динамические характеристики систем управления.
- •Математическое описание сау.
- •11. Типовые входные воздействия.
- •12. Частотные характеристики объектов и систем управления.
- •13. Типовые динамические звенья сау: безынерционное звено, апериодическое звено 1-го порядка.
- •14. Инерционное звено 2-го порядка.
- •15. Логарифмические частотные характеристики колебательного звена.
- •20. Уравнение статики и уравнение динамики сау.
- •21. Критерий устойчивости Гурвица.
- •22. Методика анализа устойчивости сау.
- •23. Передаточные функции систем различной структуры.
- •Последовательное соединение звеньев.
- •Параллельное включение звеньев.
- •Встречно-параллельное соединение динамических звеньев.
- •3.2. Контур с положительной обратной связью.
- •24. Преобразование структурных схем.
- •25. Теоремы а.М. Ляпунова, определение критерия устойчивости, необходимое условие устойчивости Рауса, формулировка критерия устойчивости Гурвица. Теоремы а.М. Ляпунова.
- •Критерии устойчивости сау.
- •26. Методика построения логарифмической частотной характеристики сау: статические системы.
- •27. Передаточные и переходные функции сау.
- •28. Методика построения логарифмической частотной характеристики сау: астатические системы.
- •29. Принцип аргумента.
- •30. Критерий устойчивости Найквиста для систем с неустойчивой разомкнутой цепью.
- •3 1. Анализ качества сау в статике.
- •32. Методика построения логарифмической частотной характеристики контура с отрицательной обратной связью.
- •33. Критерий Найквиста, сформулированный я.З.Цыпкиным. Формулировка критерия Найквиста для лчх. Формулировка я.З. Цыпкина
- •Критерий Найквиста для лчх
- •34. Критерий Найквиста: причины широкого применения в инженерной практике, критерий Найквиста для систем, устойчивых в разомкнутом состоянии.
- •1. Система, устойчивая в разомкнутом состоянии
- •35. Методика построения логарифмической частотной характеристики сау: параллельное соединение звеньев.
- •36. Анализ качества сау в динамике.
- •Прямые показатели качества сау
- •37. Запасы устойчивости. Запасы устойчивости
- •38. Анализ качества сау. Исследование качества сау
- •Методы исследования качества сау
- •39. Критерий Найквиста для систем, разомкнутые цепи которых кроме полюсов с отрицательными вещественными частями имеют полюса на мнимой оси.
- •40. Критерий Найквиста для систем, разомкнутая цепь которых устойчива.
- •Система, устойчивая в разомкнутом состоянии
- •41. Передаточная функция встречно-параллельного соединения звеньев. Правило определения передаточных функций замкнутых сау.
- •3.1. Контур с отрицательной обратной связью.
- •3.2. Контур с положительной обратной связью.
- •42. Расчёт линейных непрерывных сау по заданной точности в установившемся режиме работы.
- •1. Расчет установившегося режима работы сар по заданным коэффициентам рассогласования (ошибки)
- •43. Алгоритм построения желаемой лчх по методу в.В.Солодовникова.
- •44. Синтез корректирующей цепи последовательного типа.
- •45. Приближённый метод построения лчх корректирующей отрицательной обратной связи.
- •46. Типовые регуляторы: пд-регулятор.
- •Реализация пд-регулятора
- •47. Типовые регуляторы: пи-регулятор.
- •Реализация пи-регулятора
- •48. Типовые регуляторы: пид-регулятор.
- •Реализация пид-регулятора
- •49. Расчёт систем комбинированного управления: расчёт компенсирующих устройств по каналу возмущения.
- •50. Расчёт систем комбинированного управления: расчёт систем с компенсацией динамической ошибки по каналу управления.
- •51. Этапы проектирования сау. Схемы включения корректирующих устройств.
- •52. Качество работы цифровых сау. Три типа желаемых лпчх цифровых систем.
- •53. Дискретное преобразование Лапласа. Z-преобразование. Основные свойства и теоремы z-преобразования. Дискретное преобразование Лапласа
- •Основные свойства и теоремы z-преобразования
- •4. Критерий Гурвица.
- •55. Методы построения лпчх исходных (нескорректированных) цифровых систем. Учёт постоянного временного запаздывания в сау с цвм. Построение лпчх исходной (нескорректированной) цифровой сау
- •Учет постоянного временного запаздывания
- •61. Особенности синтеза систем управления с эвм в качестве управляющего устройства.
Методы исследования качества сау
Прямые методы исследования качества САУ.
Этими методами производится расчет кривых переходных процессов и оценка качества САУ ведется по прямым показателям качества.
Аналитические методы (математическое моделирование).
Классические методы решения дифференциальных уравнений.
Метод пространства состояний.
Операторный метод (использование преобразования Лапласа).
Преобразование Лапласа дифференциального уравнения.
Использование передаточных функций (представление САУ в виде структуры динамических звеньев).
Частотный метод (используется преобразование Фурье).
Численные методы решения дифференциальных уравнений.
Графо-аналитические и графические методы.
Модельно-экспериментальные методы.
В этих методах эксперименты проводятся на моделях в программных средах
микроЭВМ, на прототипах, макетах, стендах, первых образцах проектируемой
САУ.
Косвенные методы исследования САУ.
Эти методы позволяют оценить качество работы системы без построения кривых переходного процесса. Оценка качества САУ производится по косвенным показателям качества:
Корневой метод;
Частотный метод;
Методы, основанные на использовании интегральных оценок качества САУ.
Наибольшая точность построения переходных функций может быть получена классическими методами, однако для систем высокого порядка они связаны с громоздкими вычислениями, поскольку требуется знание распределения корней характеристического уравнения, расчет постоянных интегрирования и определение вынужденной составляющей решения. Причем, классические методы неприменимы к системам с запаздыванием. Для анализа систем с запаздыванием используют методы корневых годографов, трапецеидальных частотных характеристик, метод Z-преобразования и др.
39. Критерий Найквиста для систем, разомкнутые цепи которых кроме полюсов с отрицательными вещественными частями имеют полюса на мнимой оси.
40. Критерий Найквиста для систем, разомкнутая цепь которых устойчива.
Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.
Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:
Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
Удобно определять запасы устойчивости.
Система, устойчивая в разомкнутом состоянии
Пусть введем вспомогательную функцию
заменим pj, тогда
Согласно принципа аргумента изменение аргумента D(j) и Dз(j) при 0<< равно Тогда то есть годограф W1(j) не должен охватывать начало координат.
Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j0), а вместо вспомогательной функции W1(j) используем АФХ разомкнутой системы W(j).
Формулировка критерия №1
Если разомкнутая цепь системы устойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика разомкнутой цепи не охватывала точку (-1, j0). |