
- •Объекты управления.
- •Обобщенная структурная схема объекта управления
- •Объекты с самовыравниванием:
- •Объекты без самовыравнивания.
- •Объекты с запаздыванием.
- •Типовая структурная схема трёхкоординатной сау.
- •3. Классификация сау.
- •Фундаментальные принципы управления. Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •1. Принцип разомкнутого управления
- •Принцип управления по возмущению (принцип компенсации, принцип Понселе).
- •5. Фундаментальные принципы управления. Принцип обратной связи (принцип управления по отклонению контролируемой функции от входного воздействия, принцип Ползунова-Уатта).
- •6. Принцип обратной связи.
- •7. Фундаментальные принципы управления. Комбинированный принцип управления.
- •8. Статические и астатические сау.
- •9. Статические характеристики звеньев и объектов сау. Динамические характеристики систем управления.
- •Математическое описание сау.
- •11. Типовые входные воздействия.
- •12. Частотные характеристики объектов и систем управления.
- •13. Типовые динамические звенья сау: безынерционное звено, апериодическое звено 1-го порядка.
- •14. Инерционное звено 2-го порядка.
- •15. Логарифмические частотные характеристики колебательного звена.
- •20. Уравнение статики и уравнение динамики сау.
- •21. Критерий устойчивости Гурвица.
- •22. Методика анализа устойчивости сау.
- •23. Передаточные функции систем различной структуры.
- •Последовательное соединение звеньев.
- •Параллельное включение звеньев.
- •Встречно-параллельное соединение динамических звеньев.
- •3.2. Контур с положительной обратной связью.
- •24. Преобразование структурных схем.
- •25. Теоремы а.М. Ляпунова, определение критерия устойчивости, необходимое условие устойчивости Рауса, формулировка критерия устойчивости Гурвица. Теоремы а.М. Ляпунова.
- •Критерии устойчивости сау.
- •26. Методика построения логарифмической частотной характеристики сау: статические системы.
- •27. Передаточные и переходные функции сау.
- •28. Методика построения логарифмической частотной характеристики сау: астатические системы.
- •29. Принцип аргумента.
- •30. Критерий устойчивости Найквиста для систем с неустойчивой разомкнутой цепью.
- •3 1. Анализ качества сау в статике.
- •32. Методика построения логарифмической частотной характеристики контура с отрицательной обратной связью.
- •33. Критерий Найквиста, сформулированный я.З.Цыпкиным. Формулировка критерия Найквиста для лчх. Формулировка я.З. Цыпкина
- •Критерий Найквиста для лчх
- •34. Критерий Найквиста: причины широкого применения в инженерной практике, критерий Найквиста для систем, устойчивых в разомкнутом состоянии.
- •1. Система, устойчивая в разомкнутом состоянии
- •35. Методика построения логарифмической частотной характеристики сау: параллельное соединение звеньев.
- •36. Анализ качества сау в динамике.
- •Прямые показатели качества сау
- •37. Запасы устойчивости. Запасы устойчивости
- •38. Анализ качества сау. Исследование качества сау
- •Методы исследования качества сау
- •39. Критерий Найквиста для систем, разомкнутые цепи которых кроме полюсов с отрицательными вещественными частями имеют полюса на мнимой оси.
- •40. Критерий Найквиста для систем, разомкнутая цепь которых устойчива.
- •Система, устойчивая в разомкнутом состоянии
- •41. Передаточная функция встречно-параллельного соединения звеньев. Правило определения передаточных функций замкнутых сау.
- •3.1. Контур с отрицательной обратной связью.
- •3.2. Контур с положительной обратной связью.
- •42. Расчёт линейных непрерывных сау по заданной точности в установившемся режиме работы.
- •1. Расчет установившегося режима работы сар по заданным коэффициентам рассогласования (ошибки)
- •43. Алгоритм построения желаемой лчх по методу в.В.Солодовникова.
- •44. Синтез корректирующей цепи последовательного типа.
- •45. Приближённый метод построения лчх корректирующей отрицательной обратной связи.
- •46. Типовые регуляторы: пд-регулятор.
- •Реализация пд-регулятора
- •47. Типовые регуляторы: пи-регулятор.
- •Реализация пи-регулятора
- •48. Типовые регуляторы: пид-регулятор.
- •Реализация пид-регулятора
- •49. Расчёт систем комбинированного управления: расчёт компенсирующих устройств по каналу возмущения.
- •50. Расчёт систем комбинированного управления: расчёт систем с компенсацией динамической ошибки по каналу управления.
- •51. Этапы проектирования сау. Схемы включения корректирующих устройств.
- •52. Качество работы цифровых сау. Три типа желаемых лпчх цифровых систем.
- •53. Дискретное преобразование Лапласа. Z-преобразование. Основные свойства и теоремы z-преобразования. Дискретное преобразование Лапласа
- •Основные свойства и теоремы z-преобразования
- •4. Критерий Гурвица.
- •55. Методы построения лпчх исходных (нескорректированных) цифровых систем. Учёт постоянного временного запаздывания в сау с цвм. Построение лпчх исходной (нескорректированной) цифровой сау
- •Учет постоянного временного запаздывания
- •61. Особенности синтеза систем управления с эвм в качестве управляющего устройства.
30. Критерий устойчивости Найквиста для систем с неустойчивой разомкнутой цепью.
Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:
Следствием наличия неустойчивых звеньев;
Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.
Xотя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи.
Пусть характеристический многочлен D(p) разомкнутой системы имеет m корней с положительной вещественной частью.
Тогда
Вспомогательная
функция
при замене pj
согласно принципа аргумента для
устойчивых замкнутых систем должна
иметь следующее изменение аргумента
при
Формулировка критерия №3
Для устойчивости замкнутой системы, разомкнутая цепь которой неустойчива, требуется, чтобы амплитудно-фазовая характеристика разомкнутой цепи (с дополнением в бесконечности для систем с нулевыми и чисто мнимыми полюсами передаточной функции разомкнутой системы) охватывала точку (-1, j0) против часовой стрелки на угол m, где m - число полюсов с положительной вещественной частью в передаточной функции неустойчивой разомкнутой цепи системы. |
3 1. Анализ качества сау в статике.
Одно из основных требований, которым должна удовлетворять САУ – обеспечение необходимой точности воспроизведения входного воздействия в установившемся режиме. Ошибка отработки системой входного воздействия зависит от структуры системы, параметров звеньев, типа и производных входного воздействия.
Большинство известных методов анализа качества САУ в статике ориентировано на анализ рассогласования (называемого ошибкой) в системе в установившемся режиме. Рассмотрим такую постановку задачи.
Пусть структурная схема исходной САУ приведена к типовой (рис.1).
При исследовании точности системы управления в установившемся режиме целесообразно располагать выражениями для передаточных функций ошибки замкнутой системы по управляющему и возмущающему воздействиям.
На основании принципа суперпозиции с помощью передаточных функций замкнутой системы определим изображение сигнала рассогласования называемое в технической литературе сигналом ошибки:
где Ex(p) – рассогласование по каналу управления,
Ef(p) – рассогласование по каналу возмущения,
Wx(p) – передаточная функция ошибки по каналу управления,
Wf(p) – передаточная функция ошибки по каналу возмущения.
Для оценки точности работы системы при единичных ступенчатых входном воздействии и возмущении определяется статическая ошибка, которая может быть получена из последнего выражения с помощью теоремы о конечном значении функции:
Передаточный коэффициент системы по каналу задания в установившемся режиме:
Установившаяся приведенная ошибка по каналу задания в статической системе при единичном ступенчатом воздействии:
в астатической
системе 1-го порядка при
[x(t)=t]
:
в астатической
системе 2-го порядка при
[x(t)=0,5t2]
:
Таблица значений
установившейся ошибки
Порядок астатизма системы |
X(p) |
Добротность системы |
||
1(t) |
t |
t2/2 |
||
1/p |
1/p2 |
1/p3 |
||
C0 |
C1 |
C2 |
||
0 |
1/(1+Kp) |
∞ |
∞ |
|
1 |
0 |
1/Kv |
∞ |
|
2 |
0 |
0 |
1/Ka |
|
Если управляющее воздействие x(t) имеет произвольную форму, но достаточно плавную
вдали от начальной точки процесса в том смысле, что через некоторое время существенное значение имеет только конечное число m производных
dx/dt, d2x/dt2, . . . , dmx/dtm ,
то приведенную ошибку системы по каналу задания можно найти с помощью коэффициентов ошибок:
где передаточную
функцию
представим в виде ряда
сходящегося при малых p, что соответствует установившемуся режиму работы. Коэффициенты этого ряда называются коэффициентами ошибок и определяются с помощью выражений:
.
Разложение в ряд можно получить непосредственным делением полинома числителя на полином знаменателя передаточной функции. Коэффициенты C0, C1 и C2 называются соответственно коэффициентами позиционной, скоростной ошибки и ошибки от ускорения.
Переходя к оригиналу, выразим квазиустановившуюся ошибку через коэффициенты ошибок, управляющее воздействие и его производные:
.
Аналогично вводится понятие коэффициентов ошибок по возмущающему воздействию.
В системах с неединичной обратной связью ошибка системы
δ(t)=y(t)-yэт(t) ,
где yэт(t) – требуемая (эталонная,безошибочная) выходная функция, равная, обычно,
x(t)/Kос .