Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термодинамика.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
321.45 Кб
Скачать

15) Политропные процессы

До сих пор рассматривались процессы, у которых имелись вполне определенные признаки: изохорный процесс осуществлялся при постоянном объеме; изобарный — при постоянном давлении; изотермический — при постоянной температуре; адиабатный— при отсутствии теплообмена между рабочим телом и внешней средой. Наряду с этими процессами можно представить еще бесконечное множество процессов, у которых имеются другие постоянные признаки.

Условились всякий процесс идеального газа, в котором удельная теплоемкость является постоянной величиной, называть политропным процессом, а линию процесса — политропой.

Из определения политропного процесса следует, что основные термодинамические процессы — изохорный, изобарный, изотермический и адиабатный,— если они протекают при постоянной удельной теплоемкости, являются частными случаями политропного процесса. Итак, политропный процесс проходит при постоянной теплоемкости.

Если теплоемкость зависит от температуры, то нужно найти среднюю теплоемкость, чтобы процесс стал политропным.

17)Термодинамические циклы. Цикл Карно.

Цикл Карно. Состоит из двух изотерм и двух адиабат. Этот цикл представ­ляет собой замкнутый процесс , со­вершаемый рабочим телом в идеаль­ной тепловой машине при наличии двух источников теплоты: нагревателя и холодильника.

 Цикл Карно в pv-диаграмме

Процессы 1—2 и 3—4 являются изо­термическими, а 2—3 и 4—1 — адиа­батными. Начальная температура ра­бочего тела в цикле принимается рав­ной температуре нагревателя T1. При изотермическом расширении от состо­яния 1 до состояния 2 рабочее тело получает от нагревателя количество теплоты q1 при температуре T1. На участке 2—3 рабочее тело адиабатно расширяется. При этом температура рабочего тела понижается отT1 до T2, а давление падает от p2 до p3. При сжа­тии по изотерме 3—4 от рабочего тела отводится к холодильнику количество теплоты q2 при температуре T2. Дальнейшее сжатие по адиабате 4—1 приводит к повышению температуры рабочего тела от T2 до T1, а рабочее тело возвращается в первоначальное состояние.

Суммарная работа цикла lц графически изображается площадью 12341.

Термический к. п. д. цикла:

Количество подведённой теплоты:

Количество отведённой теплоты:

Работа цикла Карно

Термический к.п.д. цикла:

Цикл с подводом теплоты при посто­янном объёме состоит из двух адиабат и двух изохор

Характеристики цикла:

-степень сжатия

степень повышения давления

Количество подведённой теплоты :

Количество отведённой теплоты:

Работа цикла

Термический к.п.д. цикла:

Цикл с подводом теплоты при посто­янном давлении состоит из двух адиа­бат, одной изобары и одной изохоры.

Характеристики цикла:

-степень сжатия

степень предварительного расширения.

Количество подведённой теплоты :

Количество отведённой теплоты:

Работа цикла

Термический к.п.д. цикла:

18)Цикл дизельного двигателя со смешенным подводом теплоты. Цикл Тринклера. Сжатие (а-с на диаграмме) осуществлялось по адиабате. Теплота подводится смешанно: изохорно (c-z на диаграмме) и далее изобарно (z'-z на диаграмме). Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме)

Все выпускающиеся сейчас дизельные двигатели на самом деле работают по циклу Сабатэ - Тринклера, циклу со смешанным подводом теплоты (и с механическим распыливанием топлива). Теплота подводится сначала изохорно, а затем, как и у цикла Дизеля изобарно.

Степени сжатия у безнаддувных двигателей достигают значения 18-22, и 13-15 у наддувных высокофорсированных двигателей.

Область применения этих двигателей очень широка: генераторы, автомобили как грузовые так и легковые, трактора, тепловозы, судна и корабли, самолеты, вспомогательные энергетические установки как на кораблях так и на электростанциях, приводы насосов и т.д. и т.п.

У судовых малооборотных дизелей (МОД) эффективный КПД доходит до 50-55%.

У среднеоборотных тепловозных и судовых дизелей на уровне 45%.

Соблюдается тенденция чем больше двигатель ( а именно диаметр цилиндра и ход поршня) и чем менее он оборотистый – тем более он экономичен.

19)Цикл с подводом теплоты в изохорном процессе. Цикл карбюраторного двигателя. Цикл Отто.Отто первым осуществил сжатие для поднятия максимальной температуры цикла. Сжатие (а-с на диаграмме) осуществлялось по адиабате (без изменения теплоты). Теплота подводится изохорно (с-z на диаграмме). Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме)

КПД автомобильных двигателей (в большинстве своем они используются именно в автомобилях, но также и в лодочных моторах и малой авиации) работающих по циклу Отто достигает 33-35%.

Степени сжатия достигают значения 8-9 (до10) у карбюраторных двигателей, 10-11 у двигателей с распределенным впрыском и до 12.5 у двигателей с непосредственным впрыском. У надувных двигателей степень сжатия понижают, с целью избежания детонации (т.к. наддувный мотор работает с большими давлениями и температурами в конце такта сжатия). У двигателей с непосредственным впрыском есть возможность работы на обедненных смесях с α=1.15-1.3 этим достигается высокая экономия топлива и снижение выбросов (в основном СО).

20)Цикл с подводом теплоты при постоянном давлении, близкий к циклу в компрессорных дизелях. Цикл дизеля Дизель предложил сжимать в цилиндре не топливо-воздушную смесь, а воздух. В конце такта сжатия подавалось топливо в смеси с воздухом, от высокой температуры и давления в конце такта сжатия происходило самовоспламенение топлива.

Сжатие (а-с на диаграмме) осуществлялось также по адиабате. Теплота подводится изобарно (с-z на диаграмме). Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме). Существенным преимуществом этого цикла является возможность применения высоких степеней сжатия (свыше 20, сам Дизель хотел около 100, но ее дальнейшее увеличение нецелесообразно из-за высокой механической и тепловой напряженности деталей двигателя).

Теплота подводится изобарно, а отводится изохорически (изохорно).

Впрыск топлива происходил в конце такта сжатия. Особенностью цикла Дизеля, в его первозданном виде было компрессорное пневматическое распыливание топлива.

Отказ от этого цикла был связан с тем что на привод компрессора (а у «настоящего» дизеля было компрессорное впрыскивание топливо – воздушной смеси) приходилось 10-15% работы двигателя, в связи с чем расход топлива у таких дизелей был не совсем приемлемым, т.е. эффективные показатели были ниже чем у цикла Сабатэ – Тринклера, но в тоже время индикаторные показатели и экологические показатели были выше чем у двигателей работающих по циклу Сабатэ – Тринклера (о них речь пойдет ниже). Связанно это было с более лучшим смесеобазованием - подавалась топливовоздушная смесь, а нетопливо в жидкой фазе как у современных дизелей. Повсеместный переход от пневматического на механическое распыливание топлива и соответственно с цикла Дизеля на цикл Сабатэ - Тринклера начался в 30-х годах прошлого века. Практически сейчас двигателей работающих по циклу Дизеля не производятся (за исключением экспериментальных образцов)

24)Расчет многоступенчатого турбокомпрессора Для получения газа высокого давления применяют многоступенчатые ком­прессоры

в которых сжатие газа осуществляется политропно в нескольких последова­тельно соединённых цилиндрах с про­межуточным его охлаждением после каждого сжатия.

Применение сжатия газа в нескольких цилиндрах понижает отношение дав­лений в каждом из них и повышает объёмный к.п.д. компрессора. Кроме того, промежуточное охлаждение газа после каждой ступени улучшает усло­вия смазки поршня в цилиндре и уменьшает расход энергии на привод компрессора.

идеальная индикаторная диаграмма трёхступенчатого компрессора, где 0-1 – линия всасывания в первую ступень;

1-2 – политропный процесс сжатия в первой ступени; 2-а – линия нагнета­ния из первой ступени в первый охла­дитель; а-3 – линия всасывания во вто­рую ступень; 3-4 – политропный про­цесс сжатия во второй ступени; 4-в – линия нагнетания из второй ступени во второй охладитель; в-5 – линия вса­сывания в третью ступень; 5-6 - по­литропный процесс сжатия в третьей ступени; 6-с – линия нагнетания из третьей ступени в резервуар или на производство. Отрезки 2-3, 4-5 изоб­ражают уменьшение объёма газа в процессе при постоянном давлении от охлаждения в первом и втором охла­дителях. Охлаждение рабочего тела во всех охладителях производится до од­ной и той же температуры, равной начальной Т1, поэтому температуры газа в точках 1, 3 и 5 одинаковые и лежат на изотерме 1 – 7.

Отношение давлений во всех ступе­нях обычно берётся одинаковым:

При одинаковых отношениях давле­ний во всех ступенях, равенстве начальных температур и равенстве показателей политропы равны между собой и конечные температуры газа в отдельных ступенях компрессора:

Степень увеличения давления в каж­дой ступени или при z ступеней

Степень увеличения давления в каж­дой ступени равна корню z-й степени из отношений конечного давления

к начальному

При равенстве температур газа у входа в каждую ступень и равенстве отно­шений давлений во всех цилиндрах получаем равенство затраченных ра­бот во всех ступенях компрессора:

Во второй ступени

Работа в третьей ступени

Откуда l1=l2=l3

Полная удельная работа в джоулях, расходуемая на сжатие газа в трёх сту­пенях компрессора: lк=3l1

При одинаковых условиях сжатия газа количества теплоты , отводимые от газа в отдельных ступенях, равны между собой:

Теплоту отводимую от газа в любом охладителе при изобарном процессе охлаждения, находим по формуле:

В Ts-диаграммах процессы адиабат­ного сжатия изображены прямыми 1-2, 3-4, 5-6, а процессы охлаждения кри­выми 2-3, 4-5, 6-7.

Процессы политропного сжатия изоб­ражены кривыми 1-2, 3-4, 5-6, а про­цессы охлаждения в охладителях - ли­ниями 2-3, 4-5, 6-7.