
- •Примерный перечень вопросов для экзамена
- •История развития статистики как науки.
- •Понятие предмета и метода статистики.
- •Определение особенностей предмета статистического познания. Общие совокупности как предмет статистики.
- •Характеристика статистической методологии.
- •Теоретические основы статистики как науки. Отрасли статистики.
- •Единица совокупности. Признаки единиц совокупности, их классификация.
- •Задачи статистики в современных условиях. Современная организация статистики в России.
- •Роль статистического наблюдения. Организационные формы статистического наблюдения.
- •Виды статистического наблюдения (по признакам времени, полноты охвата единиц совокупности).
- •Статистическое наблюдение. Этапы его проведения. Общая характеристика.
- •Методология статистического наблюдения: цель, объект, единица, программа, место и время наблюдения.
- •Формы, виды и способы наблюдения. Характеристика.
- •Ошибки статистического наблюдения.
- •Сводка и группировка статистических данных. Задачи, решаемые с помощью метода группировок.
- •Задачи и значение сводки. Статистические показатели как инструмент сводки.
- •Виды статистических группировок. Характеристика. Примеры.
- •Принципы построения группировок.
- •Ряды распределения. Их виды. Построение дискретных и интервальных вариационных рядов.
- •Графический анализ вариационных рядов.
- •Статистические таблицы. Характеристика и классификации.
- •Понятие о статистическом графике. Роль графического способа изображения в статистике. Элементы статистического график правила его построения. Основные виды графических изображений.
- •Правила построения и анализ статистических таблиц.
- •Понятие и виды статистических показателей.
- •Понятие об абсолютных статистических величинах. Виды абсолютных величин, их значение. Единицы измерения абсолютных величин.
- •Относительные показатели. Их виды и взаимосвязь.
- •Средние показатели. Их сущность и значение.
- •Виды средних и способы их вычисления.
- •Средняя арифметическая и гармоническая. Правила выбора формы средней.
- •Структурные средние. Общая характеристика, анализ и интерпретация.
- •Понятие вариации и её значение в экономических исследованиях.
- •Абсолютные показатели вариации. Общая характеристика, анализ и интерпретация.
- •Относительные показатели вариации. Общая характеристика, анализ и интерпретация.
- •Виды дисперсии и правило их сложения.
- •Выборочное наблюдение. Понятие, характеристика, значение в социально-экономических исследованиях.
- •Способы, методы и виды формирования выборочной совокупности.
- •Ошибки выборочного наблюдения (средняя и предельная).
- •Определение оптимального (необходимого) объёма выборки.
- •Оценка результатов выборочного наблюдения и распространение их на генеральную совокупность.
- •Малая выборка: понятие, характеристика, сфера применения. Ошибка малой выборки.
- •Основные понятия корреляционного и регрессионного анализа.
- •Понятие взаимосвязанных признаков как предмет статистического изучения связи. Задачи статистического изучения связи
- •Выбор формы уравнения регрессии для анализа экономических явлений. Оценка параметров уравнения регрессии.
- •Статистические характеристики тесноты связи: эмпирическое корреляционное отношение, линейный коэффициент корреляции, коэффициент детерминации.
- •Методы изучения связи альтернативных признаков. Коэффициенты ассоциации, контингенции и взаимной сопряженности. Анализ и интерпретация.
- •Изучение зависимости между количественными признаками. Ранговые показатели связи.
- •Понятие и классификация рядов динамики.
- •Правила построения ряда динамики.
- •Показатели анализа ряда динамики.
- •Динамические средние, их отличительные особенности. Расчет динамических средних.
- •Аналитические показатели динамики: показатели уровня, абсолютного и относительного прироста, абсолютное содержание 1% прироста.
- •Структура ряда динамики. Проверка ряда на наличие тренда.
- •Анализ сезонных колебаний.
- •Элементы прогнозирования и интерполяции.
- •Понятие об индексах. Значение индексов в анализе социально-экономических явлений.
- •Индексы индивидуальные и общие. Их классификация.
- •Сводные индексы в агрегатной и средней формах.
- •Индексы пространственно - территориального сопоставления.
- •Важные экономические индексы, их взаимосвязи.
Понятие вариации и её значение в экономических исследованиях.
Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака.
Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации.
Задачи статистического изучения вариации:
1) изучение характера и степени вариации признаков у отдельных единиц совокупности;
2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности.
В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация.
Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д.
По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения.
Абсолютные показатели вариации. Общая характеристика, анализ и интерпретация.
Для определения абсолютной меры колеблемости признаков или величины вариации применяются абсолютные средние размеры вариации:
1. Размах вариации – это абсолютная разность между максимальным и минимальным значением признака в изучаемой совокупности. Измеряет только крайние отклонения вариант в ряду
2. Среднее линейное отклонение – определяется из отклонений индивидуальных значений признака от средней величины, без учета знака этих отклонений. Измеряет отклонение каждой варианты (взвешенная)
- простое среднее
значение
- взвешенное среднее
значение
3. Дисперсия (средний квадрат отклонения) – определяется как среднее из отклонений индивидуальных значений признака от средней величины, возведенной в квадрат
- простая
- взвешенная
4. Среднее квадратическое отклонение – является мерой надежности средней величины, чем оно меньше, тем точнее среднее арифметическое отражает собой всю изучаемую совокупность. Выражается в тех же единицах измерения, что и признак
–
простая
-
взвешенная
Среднее квадратическое отклонение по величине всегда больше среднего линейного отклонения. Для нормального закона распределения это отношение
Если это отношение больше, то это свидетельствует о наличие в совокупности резких выделяющихся отклонений. Неоднородно с основной массой элементов, нарушающих развитие основной тенденции или закономерности совокупности
Свойства дисперсии:
1) дисперсия постоянной величины равна 0
2) уменьшение всех значений признака на одну и уже величину А не меняет величину дисперсии
3) уменьшение всех значений признаков в К раз, уменьшает значение дисперсию в К2 раз, а среднее квадратическое отклонение в К раз
4) дисперсия любой величины А, в той или иной степени отличающийся от средней арифметической всегда, будет больше дисперсии средней арифметической (свойство минимальности)