- •По теории вероятностей
- •1.2 Структурные средние и способы их вычисления
- •Вопрос 1.6 Распределение «хи-квадрат», t-распределение Стьюдента, распределение f Фишера-Снедекора.
- •2. По математической статистике
- •Вопрос 2.1 Генеральная совокупность и выборка
- •Вопрос 2.2 Понятие о вариационных рядах, средняя ряда. Показатели вариации. Дисперсия, среднее квадратичное отклонение (стандартное отклонение). Оценка структурных средних.
- •2.10 Однофакторный дисперсионный анализ
- •2.11. Анализ качественных признаков
- •Примеры сравнение качественных признаков.
- •1) Тромбозы шунта при приеме плацебо и аспирина
- •2.12 Доверительный интервал для среднего.
- •2.13 Доверительный интервал для доли.
- •2.14. Определение необходимого объема выборки.
- •2.15. Повторные измерения (Парный критерий Стьюдента).
- •2.16. Критерий Крускала-Уоллиса
- •2.18 Критерий знаков z
- •Линейная регрессия и метод наименьших квадратов
- •2.23. Оценка параметров уравнения регрессии по выборке
- •2.24. Ранговый коэффициент корреляции Спирмена.
- •Вопросы прикладной (микробиологической) статистики
- •3.1 Кривая «доза-эффект»
- •Вопрос 3.2 методы количественной оценки иммуногенности вакцин.
- •Вопрос 3.3 количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем
- •3.4 Количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем иммунитета
- •3.5. Количественные закономерности связи между уровнем иммунитета и дозой антигена.
- •3.7 Метод Кербера.
- •3.8 Пробит-метод.
- •Вопрос 4.1 Факторы. Требования к ним.
- •Вопрос 4.2 Параметр оптимизации. Требования к нему.
- •4.3 Полный факторный эксперимент
- •Свойства матриц полного факторного эксперимента
- •Вопрос 4.5 Метод крутого восхождения.
- •Вопрос 4.6 Симплексный метод оптимизации.
- •5. Вопросы по методам математического моделирования в биологии
- •5.1 Исследование мат. Модели
- •5.2 Исследование моделей биологических систем, описываемых системами двух автономных дифференциальных уравнений.
- •Исследование устойчивости стационарных состояний моделей биологических систем.
- •5.4. Мультистационарные системы
- •5.5 Колебания в биологических системах. Предельный цикл. Теоремы, определение существование предельного цикла.
- •5.6 Анализ модели брюсселятор.
- •5.7 Модели взаимодействия двух видов
- •Вопрос 5,8 Уравнение конкуренции и их анализ ..
- •5.9 Уравнения системы «хищник – жертва» и их анализ.
- •5.10 Моделирование микробных популяций.
5.9 Уравнения системы «хищник – жертва» и их анализ.
Для взаимоотношений типа хищник‑жертва или паразит‑хозяин система уравнений (9.1) принимает вид:
(9.7)
Здесь, в отличие от (9.2) знаки b12 и b21 - разные. Как и в случае конкуренции, начало координат
(9.8)
является особой точкой типа неустойчивый узел. Три других возможных стационарных состояния:
, (9.9)
(9.10)
(9.11)
Таким образом, возможно выживание только жертвы (9.10), только хищника (9.9) (если у него имеются и другие источники питания) и сосуществование обоих видов (9.11). Последний вариант уже был рассмотрен нами в лекции 5. Возможные типы фазовых портретов для системы хищник-жертва представлены на рис. 9.4.
Изоклины горизонтальных касательных представляют собой прямые
x2 = – b21х1/c2 + a1/c2, х2 = 0,
а изоклины вертикальных касательных – прямые
x2 = – c1х1/b12 + a2/b12, х1 = 0.
Стационарные точки лежат на пересечении изоклин вертикальных и горизонтальных касательных.
Рис. 9.4. Расположение главных изоклин на фазовом портрете вольтерровской системы хищник-жертва (9.7) при различных соотношениях параметров. Стрелками указано направление фазовых траекторий. Пояснения в тексте. Из рис. 9.4 видно следующее. Система хищник – жертва (9.7) может иметь устойчивое положение равновесия, в котoром популяция жертв полностью вымерла () и остались только хищники (точка 2 на рис. 9.4 а). Очевидно, такая ситуация может реализоваться лишь в случае, если кроме рассматриваемого вида жертв х1 хищник х2– имеет дополнительные источники питания. Этот факт в модели отражается положительным членом в правой части уравнения для х2. Особые точки (1) и (3) (рис. 9.4 а) являются неустойчивыми. Вторая возможность – устойчивое стационарное состояние, в котором популяция хищников полностью вымерла и остались одни жертвы – устойчивая точка (3) (рис. 9.4 6). Здесь особая точка (1) – также неустойчивый узел.
Наконец, третья возможность – устойчивое сосуществование популяций хищника и жертвы (рис. 9.4 в), стационарные численности которых выражаются формулами (9.11).
Как и в случае одной популяции (см. Лекция 3), для модели (9.7) можно разработать стохастическую модель, но для нее нельзя получить решение в явном виде. Поэтому мы ограничимся общими рассуждениями. Допустим, например, что точка равновесия находится на некотором расстоянии от каждой из осей. Тогда для фазовых траекторий, на которых значения x1, x2 остаются достаточно большими, вполне удовлетворительной будет детерминистическая модель. Но если в некоторой точке фазовой траектории какая–либо переменная не очень велика, то существенное значение могут приобрести случайные флюктуации. Они приводят к тому, что изображающая точка переместится на одну из осей, что означает вымирание соответствующего вида.
Таким образом, стохастическая модель оказывается неустойчивой, так как стохастический “дрейф” рано или поздно приводит к вымиранию одного из видов. В такого рода модели хищник в конечном счете вымирает, это может произойти либо случайно, либо вследствие того, что сначала элиминируется популяция его жертвы. Стохастическая модель системы хищник – жертва хорошо объясняет эксперименты Гаузе (Гаузе, 1934), в которых инфузория Paramettum candatum служила жертвой для другой инфузории Didinium nasatum – хищника. Ожидавшиеся согласно детерминистическим уравнениям (9.7) равновесные численности в этих экспериментах составляли примерно всего по пять особей каждого вида, так что нет ничего удивительного в том, что в каждом повторном эксперименте довольно быстро вымирали либо хищники, либо жертвы (а за ними и хищники) Результаты экспериментов представлены на рис. 9.5.
Рис. 9.5. Рост Parametium caudatum и хищной инфузории Dadinium nasutum. Из: Gause G.F. The struggle for existence. Baltimore, 1934
Итак, анализ вольтерровских моделей взаимодействия видов показывает, что, несмотря на большое разнообразие типов поведения таких систем, незатухающих колебаний численности в модели конкурирующих видов не может быть вовсе. Однако в природе и в эксперименте такие колебания наблюдаются. Необходимость их теоретического объяснения послужила одной из причин для формулировки модельных описаний в более общем виде.
