- •По теории вероятностей
- •1.2 Структурные средние и способы их вычисления
- •Вопрос 1.6 Распределение «хи-квадрат», t-распределение Стьюдента, распределение f Фишера-Снедекора.
- •2. По математической статистике
- •Вопрос 2.1 Генеральная совокупность и выборка
- •Вопрос 2.2 Понятие о вариационных рядах, средняя ряда. Показатели вариации. Дисперсия, среднее квадратичное отклонение (стандартное отклонение). Оценка структурных средних.
- •2.10 Однофакторный дисперсионный анализ
- •2.11. Анализ качественных признаков
- •Примеры сравнение качественных признаков.
- •1) Тромбозы шунта при приеме плацебо и аспирина
- •2.12 Доверительный интервал для среднего.
- •2.13 Доверительный интервал для доли.
- •2.14. Определение необходимого объема выборки.
- •2.15. Повторные измерения (Парный критерий Стьюдента).
- •2.16. Критерий Крускала-Уоллиса
- •2.18 Критерий знаков z
- •Линейная регрессия и метод наименьших квадратов
- •2.23. Оценка параметров уравнения регрессии по выборке
- •2.24. Ранговый коэффициент корреляции Спирмена.
- •Вопросы прикладной (микробиологической) статистики
- •3.1 Кривая «доза-эффект»
- •Вопрос 3.2 методы количественной оценки иммуногенности вакцин.
- •Вопрос 3.3 количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем
- •3.4 Количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем иммунитета
- •3.5. Количественные закономерности связи между уровнем иммунитета и дозой антигена.
- •3.7 Метод Кербера.
- •3.8 Пробит-метод.
- •Вопрос 4.1 Факторы. Требования к ним.
- •Вопрос 4.2 Параметр оптимизации. Требования к нему.
- •4.3 Полный факторный эксперимент
- •Свойства матриц полного факторного эксперимента
- •Вопрос 4.5 Метод крутого восхождения.
- •Вопрос 4.6 Симплексный метод оптимизации.
- •5. Вопросы по методам математического моделирования в биологии
- •5.1 Исследование мат. Модели
- •5.2 Исследование моделей биологических систем, описываемых системами двух автономных дифференциальных уравнений.
- •Исследование устойчивости стационарных состояний моделей биологических систем.
- •5.4. Мультистационарные системы
- •5.5 Колебания в биологических системах. Предельный цикл. Теоремы, определение существование предельного цикла.
- •5.6 Анализ модели брюсселятор.
- •5.7 Модели взаимодействия двух видов
- •Вопрос 5,8 Уравнение конкуренции и их анализ ..
- •5.9 Уравнения системы «хищник – жертва» и их анализ.
- •5.10 Моделирование микробных популяций.
Вопрос 4.2 Параметр оптимизации. Требования к нему.
Планирование эксперимента – процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленных задач с требуемой точностью.
В общем случае объект исследования можно представить в виде структурной схемы, основанной на принципе «черного ящика». Различают следующие группы параметров:
1)X-управляющие (входные), которые называются факторами;
2)Y-выходные параметры, которые называются параметрами состояния;
3)W- возмущающие воздействия. (Предполагается, что возмущающие воздействия не поддаются контролю и либо являются случайными, либо меняются во времени.)
При рассмотрении экстремального эксперимента решают задачу оптимизации, т.е. таким образом подбирают Х, чтобы какой-то Y достигал максимального или минимального значения. Выбирается 1 параметр (параметр оптимизации) – реакция (отклик) на воздействие факторов, которые определяют поведение изучаемой системы.
При планировании эксперимента важно правильно выбрать параметр оптимизации. Движение к оптимуму возможно, если выбран один параметр оптимизации, а другие выступают в качестве ограничений.
Когда нельзя выбрать один параметр используют обобщенный параметр оптимизации - функцию от множества исходных параметров.:
- Можно оценивать y (хорошие / плохие), тогда
k
Y = ∏ (когда все y достигают максимума, то Y=1);
i=1
k
- Y = ∑( yi – yi0)2/(yi0)2 (│yi│<│yi0│, где yi0 – идеальное состояние yi )
i=1
Требования к параметру оптимизации:
Параметр оптимизации должен быть количественным, доступным для измерения и должен выражаться одним числом. Если измерение параметра невозможно, то пользуются ранговой оценкой. Ранг - это оценка параметра оптимизации по заранее выбранной шкале: двухбалльной, пятибалльной, десятибалльной и т. п. Ранговый параметр имеет ограниченную дискретную область определения. В простейшем случае область содержит два значения: да - нет; хорошо - плохо и т. д. При прочих равных условиях предпочтение необходимо отдавать количественному измерению, так как ранговая оценка носит субъективный характер.
Параметр оптимизации должен быть однозначным в статистическом смысле, т. е. заданному сочетанию уровней факторов должно соответствовать одно (с точностью до ошибки эксперимента) значение параметра оптимизации; эффективным в статистическом смысле, т. е. определяться с наибольшей точностью, что позволяет сократить до минимума число параллельных экспериментов; существовать для всех состояний исследуемого объекта; иметь физический смысл.
Параметры оптимизации могут быть экономическими, технико-экономическими, технико-технологическими и другими. Экономическими являются прибыль, себестоимость, рентабельность. К технико-экономическим относят производительность, надежность, долговечность. Технико-технологическими параметрами являются механические, физические, физико-химические и некоторые другие характеристики изделия. Большинство параметров оптимизации прямо или косвенно связано с экономичностью производства или экономичностью эксплуатации изделия.
