- •По теории вероятностей
- •1.2 Структурные средние и способы их вычисления
- •Вопрос 1.6 Распределение «хи-квадрат», t-распределение Стьюдента, распределение f Фишера-Снедекора.
- •2. По математической статистике
- •Вопрос 2.1 Генеральная совокупность и выборка
- •Вопрос 2.2 Понятие о вариационных рядах, средняя ряда. Показатели вариации. Дисперсия, среднее квадратичное отклонение (стандартное отклонение). Оценка структурных средних.
- •2.10 Однофакторный дисперсионный анализ
- •2.11. Анализ качественных признаков
- •Примеры сравнение качественных признаков.
- •1) Тромбозы шунта при приеме плацебо и аспирина
- •2.12 Доверительный интервал для среднего.
- •2.13 Доверительный интервал для доли.
- •2.14. Определение необходимого объема выборки.
- •2.15. Повторные измерения (Парный критерий Стьюдента).
- •2.16. Критерий Крускала-Уоллиса
- •2.18 Критерий знаков z
- •Линейная регрессия и метод наименьших квадратов
- •2.23. Оценка параметров уравнения регрессии по выборке
- •2.24. Ранговый коэффициент корреляции Спирмена.
- •Вопросы прикладной (микробиологической) статистики
- •3.1 Кривая «доза-эффект»
- •Вопрос 3.2 методы количественной оценки иммуногенности вакцин.
- •Вопрос 3.3 количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем
- •3.4 Количественный метод определения иммуногенности вакцин, основанный на испытании их постоянным уровнем иммунитета
- •3.5. Количественные закономерности связи между уровнем иммунитета и дозой антигена.
- •3.7 Метод Кербера.
- •3.8 Пробит-метод.
- •Вопрос 4.1 Факторы. Требования к ним.
- •Вопрос 4.2 Параметр оптимизации. Требования к нему.
- •4.3 Полный факторный эксперимент
- •Свойства матриц полного факторного эксперимента
- •Вопрос 4.5 Метод крутого восхождения.
- •Вопрос 4.6 Симплексный метод оптимизации.
- •5. Вопросы по методам математического моделирования в биологии
- •5.1 Исследование мат. Модели
- •5.2 Исследование моделей биологических систем, описываемых системами двух автономных дифференциальных уравнений.
- •Исследование устойчивости стационарных состояний моделей биологических систем.
- •5.4. Мультистационарные системы
- •5.5 Колебания в биологических системах. Предельный цикл. Теоремы, определение существование предельного цикла.
- •5.6 Анализ модели брюсселятор.
- •5.7 Модели взаимодействия двух видов
- •Вопрос 5,8 Уравнение конкуренции и их анализ ..
- •5.9 Уравнения системы «хищник – жертва» и их анализ.
- •5.10 Моделирование микробных популяций.
2.23. Оценка параметров уравнения регрессии по выборке
Рассмотрим
выборку двумерной случайной величины
(Х,
Y)
. Примем в качестве оценок условных
математических ожиданий компонент их
условные средние значения, а именно:
условным
средним
назовем
среднее арифметическое наблюдавшихся
значений Y,
соответствующих Х
= х.
Аналогично условное
среднее
-
среднее
арифметическое наблюдавшихся значений
Х,
соответствующих Y
= y.
В лекции 11 были выведены уравнения
регрессии Y
на Х
и
Х
на
Y:
M (Y / x) = f (x), M ( X / y ) = φ (y).
Условные средние и являются оценками условных математических ожиданий и, следовательно, тоже функциями от х и у, то есть
= f*(x) - (22.1)- выборочное уравнение регрессии Y на Х,
= φ*(у) - (22.2)- выборочное уравнение регрессии Х на Y.
Соответственно функции f*(x) и φ*(у) называются выборочной регрессией Y на Х и Х на Y, а их графики – выборочными линиями регрессии. Выясним, как определять параметры выборочных уравнений регрессии, если сам вид этих уравнений известен.
Пусть изучается двумерная случайная величина (Х, Y), и получена выборка из п пар чисел (х1, у1), (х2, у2),…, (хп, уп). Будем искать параметры прямой линии среднеквадратической регрессии Y на Х вида
Y = ρyxx + b , (22.3)
Подбирая параметры ρух и b так, чтобы точки на плоскости с координатами (х1, у1), (х2, у2), …, (хп, уп) лежали как можно ближе к прямой (22.3). Используем для этого метод наименьших квадратов и найдем минимум функции
.
(22.4)
Приравняем нулю соответствующие частные производные:
.
В результате получим систему двух линейных уравнений относительно ρ и b:
(22.5)
Ее решение позволяет найти искомые параметры в виде:
.
(22.6)
При этом предполагалось, что все значения Х и Y наблюдались по одному разу.
Теперь рассмотрим случай, когда имеется достаточно большая выборка (не менее 50 значений), и данные сгруппированы в виде корреляционной таблицы:
Y |
X |
||||
x1 |
x2 |
… |
xk |
ny |
|
y1 y2 … ym |
n11 n12 … n1m |
n21 n22 … n2m |
… … … … |
nk1 nk2 … nkm |
n11+n21+…+nk1 n12+n22+…+nk2 …………….. n1m+n2m+…+nkm |
nx |
n11+n12+…+n1m |
n21+n22+…+n2m |
… |
nk1+nk2+…+nkm |
n=∑nx = ∑ny |
Здесь nij – число появлений в выборке пары чисел (xi, yj).
Поскольку
,
заменим в системе (22.5)
,
где пху
– число появлений пары чисел (х,
у).
Тогда система (22.5) примет вид:
.
(22.7)
Можно решить эту систему и найти параметры ρyх и b, определяющие выборочное уравнение прямой линии регрессии:
.
Но чаще уравнение регрессии записывают в ином виде, вводя выборочный коэффициент корреляции.
Введем понятие выборочного коэффициента корреляции.
Выразим b из второго уравнения системы (22.7):
.
Подставим
это выражение в уравнение регрессии:
.
Из первого уравнения (22.7), преобразовав, получаем:
(22.8)
где
и
умножим равенство (22.8) на
:
,
откуда
.
Используя это соотношение, получим
выборочное уравнение прямой линии
регрессии Y
на Х
вида
.
(22.9)
