
- •Билет №1
- •1. Неметаллические материалы. Общая характеристика. Классификация.
- •2. Полиамиды. Свойства. Область применения в изделиях.
- •3. Стекло. Свойства стекла. Области применения в изделиях.
- •Билет №2
- •1. Полимерные материалы. Структура. Полимеризация и поликонденсация.
- •2. Полиуретаны. Свойства. Применение в изделиях. Пенополиуретан.
- •3. Силикатные материалы. Каменное литьё. Свойства. Области применения в изделиях.
- •Билет №3
- •1. Полимеризационные полимерные материалы. Полиэтилен высокого и низкого давления. Свойства. Область применения.
- •2. Фенолоформальдегидные смолы. Материалы и изделия на их основе. Область применения.
- •3. Силикатные материалы. Стеклянные и минеральные волокна. Области применения.
- •Билет №4
- •1. Полимеризационные полимерные материалы. Полипропилен. Свойства. Применение в изделиях.
- •2. Эпоксидные смолы. Материалы и изделия на их основе. Области применения.
- •3. Силикатные материалы. Теплоизоляционные материалы на основе стеклянного и минерального волокна. Области применения.
- •Билет №5
- •1. Полимеризационные полимерные материалы. Поливинилхлорид. Свойства. Применение в изделиях.
- •2. Каучуки и резины. Составы резиновых смесей. Типы резины.
- •3. Стеклокристаллические материалы. Природа и получение стеклокристаллических материалов.
- •Билет №6
- •1. Пластификация полимеров. Совместимость пластификаторов с полимерами.
- •2. Каучуки и резины. Составы резиновых смесей. Типы резины.
- •3. Стеклокристаллические материалы. Ситталы. Свойства. Область применения в изделиях.
- •Билет №7
- •1. Полимеризационные полимерные материалы. Полистирол. Свойства. Применение в изделиях.
- •2. Углеграфитовые материалы. Области применения конструкционных, углеграфитовых материалов, электродных, электроугольных изделий. Химическое оборудование из углеграфитовых матералов.
- •3. Техническая керамика. Классификация. Области применения.
- •Билет №8
- •1. Экструзионный и блочный пенополистирол. Область применения теплоизоляционных материалов на основе пенополистирола.
- •2. Углеграфитовые материалы. Структура углеграфитовых материалов.
- •3. Композиционные материалы на неметаллической основе. Принципы создания и основные типы неметаллических композиционных материалов.
- •Билет №9
- •1. Фторопласты. Свойства. Область применения в изделиях.
- •2. Углеграфитовые материалы. Свойства углеграфитовых материалов.
- •3. Композиционные материалы на неметаллической основе. Свойства. Области применения.
- •Билет №10
- •1. Простые и сложные полиэфиры. Полиформальдегид. Свойства. Применение в изделиях.
- •2. Углеграфитовые материалы. Методы устранения пористости и проницаемости углеграфитовых материалов.
- •3. Аппаратурное оформление производств неметаллических материалов. Билет №11
- •1. Простые и сложные полиэфиры. Поликарбонат. Свойства. Область применения в изделиях.
- •2. Силикатные материалы. Классификация силикатных материалов.
- •3. Оборудование, применяемое в производстве неметаллических материалов. Билет №12.
- •1. Простые и сложные полиэфиры. Полиэтилентерефталат. Свойства. Область применения в изделиях.
- •2. Стекло. Строение. Формирование структуры стекла.
- •3.Оборудование для переработки и получения изделий из неметаллических материалов.
3. Техническая керамика. Классификация. Области применения.
КЕРАМИКА(греческое keramike - гончарное искусство, от keramos - глина), изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других неорганических соединений (карбидов, боридов, нитридов, силицидов и др.). По структуре различают грубую керамику (строительная, шамотный кирпич и др.), тонкую с однородной мелкозернистой структурой (фарфор, пьезо- и сегнетокерамика, керметы и др.), пористую с мелкозернистой структурой (фаянс, терракота, майолика и др.), высокопористую (теплоизоляционные керамические материалы). По применению керамику подразделяют на строительную (кирпич, черепица, облицовочные плитки и др.), бытовую и санитарно-техническую (посуда, художественные изделия, умывальники), химически стойкую (трубы, детали химической аппаратуры), электротехническую, радиотехническую, теплоизоляционную (керамзит, пенокерамика и др.), огнеупоры.
Керамика на основе чистых оксидов. Оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры. С повышением температуры прочность керамики понижается. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.
Бескислородная керамика. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах карбидов и боридов составляет 900-1000°С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300-1700°С (на поверхности образуется пленка кремнезема) .
Билет №8
1. Экструзионный и блочный пенополистирол. Область применения теплоизоляционных материалов на основе пенополистирола.
ЭКСТРУЗИЯ (от средневекового латинского extrusio - выталкивание) полимеров (шприцевание), способ изготовления профилированных изделий большой длины из пластмасс и резин. Заключается в непрерывном выдавливании размягченного материала через отверстие определенного сечения. Осуществляется в экструдере, чаще всего шнековом (червячном). Применяется в производстве труб, пленок, автомобильных камер, для наложения электрической изоляции на провода.
Пенополистирол - теплоизоляционный материал; разновидность термопластичных пенопластов. Наилучшими характеристиками обладает пенополистирол, изготовленный методом экструзии.
2. Углеграфитовые материалы. Структура углеграфитовых материалов.
Углеграфитовые материалы — наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.