
- •1 Определение полной пористости горных пород
- •2 Определение открытой пористости горных пород
- •Вопрос №12. Связь проницаемости с пористостью и размерами поровых каналов.
- •Вопрос №13. Фазовая и относительная проницаемости горных пород
- •Вопрос №14 Измерение проницаемости горных пород Измерение проницаемости г.П.:
- •Вопрос №23. Тепловые свойства горных пород
- •Углеводородный состав
- •Классификация нефти по углеводородному составу
- •Вопрос №33. Плотность пластовых вод.
- •Вязкость пластовых вод.
- •Объемный коэффициент пластовых вод.
- •Электропроводность пл. Вод
- •Закономерности изменения электропов-ти использ. При геофизических методах исследования
- •Вопрос №34. Растворимость газов в пластовых водах
- •Вопрос №35. Влияние давления и температуры на физические свойства пластовых вод
- •С увелич. Давления кривая изотерма имеет более выпуклый характер, что объясняется большим кол-вом раств-го в воде газа. Электропроводность пл. Вод
- •Вязкость ув газов
- •Зависимость от состава нефтей
- •Методы определения коэффициента поверхностного натяжения
- •Вопрос №44. Адсорбция и строение адсорбционного слоя
- •Вопрос №45. Фазовые состояния углеводородных систем, общее положение
- •48. Источники пластовой энергии.
- •49. Силы, противодействующие вытеснению нефти из пласта.
- •50. Капиллярные силы.
- •51.Солеобразования в процессах добычи нефти.
- •52. Виды типы солей, хим ур-я их образования.
- •53.Причины и факторы, способствующие солеобразованию.
- •54 Методы и аппаратура для исследования закономерностей солеобразования
Вязкость ув газов
- характеризует силу внутреннего трения. Различают динамическую и кинематическую вязкость, кот. связаны м/у собой следующим отношением:
(1)
- [м2/с]-кинематическая вязкость
-[Па*с]- динамическая вязкость
Вязкость газа зависит от t, P и природы самого газа.
Закономерности изменения в. газов от указанных параметров можно объяснить исходя из некот. положений кинетич. теории газов. Так известно, что вязкость
(2)
-плотность газа
-
ср. скорость движения молекул газа
ср. длина свободного пробела молекул
-динамич. вязкость
С
огласно
ф-ле (2) с повышением Р плотность газа
увеличивается, но при этом уменьшается
средняя длина свободного пробега
молекул, а средняя их скорость не
изменяется , поэтому с увеличением Р
динамич. вязкость газа в начале практически
остается постоянной.
При высоких давлениях это нарушается, т.к. газ по своим св-ам приближается к жидкостям. Из формулы (2) видно, что с увеличением t-ры вязкость газа должна возрастать, т.к. ср. скорость движения молекул увелич-ся, а плотность и ср.длина пробега остаются постоянными, при неизменном объеме газа . С повышением t-ры увеличивается скорость и количество движения передаваемого из слоя в слой в ед. времени и следует, что больше будет вязкость.
Однако с повышением Р эти закономерности нарушается. При высоких Р с увеличением t вязкость газов изменяется аналогично изменению вязкости ж-ти, т.е. вязкость снижается.
В сжатом газе перелет молекул в движущиеся др. относительно др. слои затруднен и передача кол-ва движения из слоя в слой происходит в основном как у ж-тей, за счет временного объединения молекул на границе слоев. При увеличении t ухудшаются усл-ия для объед-я молекул. В следствии увеличения скоростей их движ-и и поэтому вязкость сильно сжатых газов уменьшается с ростом t-ры. (см. рис.2; лин.2 )
С увеличением молекулярной массы газа вязкость его возрастает.
Для определения вязкости газов используются следующие методы:
1. капиллярный
2. м-д измерения ск-ти падения шарика в исследован.газе.
3. м-ды, основан. на измерении ск-ти вращения цил-ров и затухания вращ-ых колебаний дисков
4. рассчетные м-ды
Вопрос №38. Поверхностные натяжение (σ) и его зависимость от температуры, давления, состава нефти. Методы его определения
Нефтяные и газовые пласты представл. огромное скопление капиллярных каналов и трещин с громадной удельной поверхностью. В следствии этого поверхностные натяжения в залежах играют огромную роль в процессах взаимного вытеснения нефти, воды и газа. В частности нефтеотдача пластов, фазовые прониц-ти во многом обусловлены поверхностными явлениями на границе ж--п , ж-ж, ж-г.
Ркап=
ф-ла Лапласа
- коэ-нт поверхн0го натяжения, мн/м
- угол смачивания, град-1
R- рад.порового канала, м
Слой, толщина кот. равна радиусу действия сил межмолекулярного взаимодействия наз. поверхностью, т.к.в этом слое сущ-ет молекулярное давление, то перемещения молекул из жидкости, для образования новой поверхности требует затраты определенной работы, переходящей в энергию поверхностного слоя- поверхностную энергию. Работа, отнесенная к единице площади вновь образованной поверхности наз. удельной свободной поверхностной энергией или поверхностным натяжением либо коэффициентом поверхностного натяжения.
= R/S
R – работа, Дж
S – площадь, м2
- коэф. поверхн. натяжения,Дж/ м2
С др. стороны поверхностное натяжение – это сила на единицу длины, необходимая для образ-я новой поверхности и в этом случае
= F / l
Н/м
F – Н (сила)
l – м (длина периметра)
В нефтяном пласте поверхностные явления м.б. на следующих границах раздела: нефть-вода, нефть- газ, вода-газ, нефть порода, вода-порода, газ-порода.
-экспериментально можно определить между жидкостями и на границе жидкость-газ.
Влияние температуры, давления и состава контактирующих фаз на поверхностное натяжение.
Величина σ чистой жидкости на границе с паром в дали от ее критической точки зависит от температуры. Рост температуры вызывает уменьшение коэффициента поверхностного натяжения из-за уменьшения межмолекулярных сил.
t t
t и соответственно поверхностные натяжения при t0C и 00С, [мн/м]
температурный коэффициент поверхностного натяжения
t-текущая t-ра системы.
С увеличением давления поверхностное натяжение жидкости на границе с газом уменьшается, так как с увеличивается давления возрастает взаимная растворимость газа в жидкости и происходит уменьшение свободной поверхностной энергии.
Для нефти эта зависимость гораздо сложнее и количественно изменение зависит от состава нефти, количества и состава растворенного в нефти газа, природы полярных компонентов нефти и газа и т.д. Чем больше растворимость газов в нефти, тем интенсивнее уменьшение с возрастанием давления. Графически это выглядит следующим образом:
1-на границе с CH4 при темп-ре 200
2-на границе с этан - пропановой смесью при темп-ре 200
3-на границе с СН2 при темп-ре 600
Поверхностное натяжение дегазационной малополярной нефти на границе с водой в пределах давлений, встречается в промысловой практике мало зависят от давлений (рис.2)
р
ис
2
Объясняется относительно небольшим примерно одинаковым изменением межмолекулярных сил каждой из жидкостей с увеличением давления, так что соотношение их остается постоянным и не приводит к существенным изменениям коэффициента поверхностного натяжения. Межфазное натяжение в системе нефть-вода так же как и на границе с азотом уменьшается при росте температуры и эта зависимость носит следующий характер.
С увеличением температуры понижается поверхностное натяжение