Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фп.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
871.94 Кб
Скачать

Вязкость ув газов

- характеризует силу внутреннего трения. Различают динамическую и кинематическую вязкость, кот. связаны м/у собой следующим отношением:

  (1)

- [м2/с]-кинематическая вязкость

-[Па*с]- динамическая вязкость

Вязкость газа зависит от t, P и природы самого газа.

Закономерности изменения в. газов от указанных параметров можно объяснить исходя из некот. положений кинетич. теории газов. Так известно, что вязкость

  (2)

-плотность газа

- ср. скорость движения молекул газа

ср. длина свободного пробела молекул

-динамич. вязкость

С огласно ф-ле (2) с повышением Р плотность газа увеличивается, но при этом уменьшается средняя длина свободного пробега молекул, а средняя их скорость не изменяется , поэтому с увеличением Р динамич. вязкость газа в начале практически остается постоянной.

При высоких давлениях это нарушается, т.к. газ по своим св-ам приближается к жидкостям. Из формулы (2) видно, что с увеличением t-ры вязкость газа должна возрастать, т.к. ср. скорость движения молекул увелич-ся, а плотность и ср.длина пробега остаются постоянными, при неизменном объеме газа . С повышением t-ры увеличивается скорость и количество движения передаваемого из слоя в слой в ед. времени и следует, что больше будет вязкость.

Однако с повышением Р эти закономерности нарушается. При высоких Р с увеличением t вязкость газов изменяется аналогично изменению вязкости ж-ти, т.е. вязкость снижается.

В сжатом газе перелет молекул в движущиеся др. относительно др. слои затруднен и передача кол-ва движения из слоя в слой происходит в основном как у ж-тей, за счет временного объединения молекул на границе слоев. При увеличении t ухудшаются усл-ия для объед-я молекул. В следствии увеличения скоростей их движ-и и поэтому вязкость сильно сжатых газов уменьшается с ростом t-ры. (см. рис.2; лин.2 )

С увеличением молекулярной массы газа вязкость его возрастает.

Для определения вязкости газов используются следующие методы:

1. капиллярный

2. м-д измерения ск-ти падения шарика в исследован.газе.

3. м-ды, основан. на измерении ск-ти вращения цил-ров и затухания вращ-ых колебаний дисков

4. рассчетные м-ды

Вопрос №38. Поверхностные натяжение (σ) и его зависимость от температуры, давления, состава нефти. Методы его определения

Нефтяные и газовые пласты представл. огромное скопление капиллярных каналов и трещин с громадной удельной поверхностью. В следствии этого поверхностные натяжения в залежах играют огромную роль в процессах взаимного вытеснения нефти, воды и газа. В частности нефтеотдача пластов, фазовые прониц-ти во многом обусловлены поверхностными явлениями на границе ж--п , ж-ж, ж-г.

Ркап= ф-ла Лапласа

- коэ-нт поверхн0го натяжения, мн/м

- угол смачивания, град-1

R- рад.порового канала, м

Слой, толщина кот. равна радиусу действия сил межмолекулярного взаимодействия наз. поверхностью, т.к.в этом слое сущ-ет молекулярное давление, то перемещения молекул из жидкости, для образования новой поверхности требует затраты определенной работы, переходящей в энергию поверхностного слоя- поверхностную энергию. Работа, отнесенная к единице площади вновь образованной поверхности наз. удельной свободной поверхностной энергией или поверхностным натяжением либо коэффициентом поверхностного натяжения.

 = R/S

R – работа, Дж

S – площадь, м2

- коэф. поверхн. натяжения,Дж/ м2

С др. стороны поверхностное натяжение – это сила на единицу длины, необходимая для образ-я новой поверхности и в этом случае

 = F / l

 Н/м

F – Н (сила)

l – м (длина периметра)

В нефтяном пласте поверхностные явления м.б. на следующих границах раздела: нефть-вода, нефть- газ, вода-газ, нефть порода, вода-порода, газ-порода.

-экспериментально можно определить между жидкостями и на границе жидкость-газ.

Влияние температуры, давления и состава контактирующих фаз на поверхностное натяжение.

Величина σ чистой жидкости на границе с паром в дали от ее критической точки зависит от температуры. Рост температуры вызывает уменьшение коэффициента поверхностного натяжения из-за уменьшения межмолекулярных сил.

t   t

t и соответственно поверхностные натяжения при t0C и 00С, [мн/м]

температурный коэффициент поверхностного натяжения

t-текущая t-ра системы.

С увеличением давления поверхностное натяжение жидкости на границе с газом уменьшается, так как с увеличивается давления возрастает взаимная растворимость газа в жидкости и происходит уменьшение свободной поверхностной энергии.

Для нефти эта зависимость гораздо сложнее и количественно изменение зависит от состава нефти, количества и состава растворенного в нефти газа, природы полярных компонентов нефти и газа и т.д. Чем больше растворимость газов в нефти, тем интенсивнее уменьшение  с возрастанием давления. Графически это выглядит следующим образом:

1-на границе с CH4 при темп-ре 200

2-на границе с этан - пропановой смесью при темп-ре 200

3-на границе с СН2 при темп-ре 600

Поверхностное натяжение дегазационной малополярной нефти на границе с водой в пределах давлений, встречается в промысловой практике мало зависят от давлений (рис.2)

р ис 2

Объясняется относительно небольшим примерно одинаковым изменением межмолекулярных сил каждой из жидкостей с увеличением давления, так что соотношение их остается постоянным и не приводит к существенным изменениям коэффициента поверхностного натяжения. Межфазное натяжение в системе нефть-вода так же как и на границе с азотом уменьшается при росте температуры и эта зависимость носит следующий характер.

С увеличением температуры понижается поверхностное натяжение