
- •Предисловие
- •Введение
- •1 Современное металлургическое производство
- •2.2 Материалы, применяемые для получения чугуна
- •2.2.1 Железные руды
- •2.2.2 Подготовка железных руд к доменной плавке
- •2.2.3 Топливо
- •2.2.4 Флюсы
- •3 Производство чугуна
- •3.1 Устройство доменной печи
- •3.2 Доменный процесс получения чугуна
- •3.3 Продукты доменной плавки
- •3.4 Технология доменной плавки
- •4 Способы внедоменного получения железа
- •4.1 Роль и назначение прямого получения железа
- •4.2 Основные способы прямого получения железа
- •4.2.4 Химико-термический способ получения железа
- •5 Производство стали
- •5.2 Основные способы производства стали
- •5.2.1 Конвертерный способ
- •5.2.2 Мартеновский способ производства стали
- •5.2.3 Производство стали в электропечах
- •5.3 Непрерывные сталеплавильные процессы
- •5.4 Способы повышения качества стали
- •5.4.1 Способы повышения качества жидкой стали
- •5.5 Разливка стали
- •5.6 Кристаллизация и строение стальных слитков
- •6 Производство ферросплавов
- •6.2 Ферросплавная печь
- •6.3 Производство ферросилиция
- •6.4 Производство ферромарганца
- •6.5 Производство феррохрома
- •6.6 Производство ферротитана
- •7.1 Перспективы развития доменного производства
- •7.2 Перспективы развития производства стали
- •8 Производство цветных металлов
- •8.1 Производство меди
- •8.2 Производство алюминия
- •8.3 Производство магния
- •8.4 Производство титана
- •9.2 Производство порошков
- •9.2.1 Механические способы получения порошков
- •9.3 Прессование металлических порошков
- •9.3.1 Общие закономерности процесса прессования
- •9.3.2 Основные способы прессования
- •9.4 Спекание
- •9.5 Горячее прессование
- •9.6 Спеченные порошковые материалы
- •9.7 Фрикционные материалы
- •9.8 Пористые порошковые материалы
- •9.9 Спеченные конструкционные материалы
- •9.10 Электротехнические порошковые материалы
- •9.10.1 Материалы электротехнических контактов
- •9.10.2 Магнитные материалы
- •Список использованных источников
- •Рисунки
обеспечения процесса приходится пропускать через реактор большое коли-чество восстановительного газа. В результате восстановительный процесс сопровождается большим расходом газа и тепла.
Чтобы предотвратить спекание восстановленного железа процесс ведется при низкой температуре (около 500 °С). железо полученное при этой температуре, характеризуется повышенной пирофорностью (самовозгораемостью на воздухе). Для предотвращения пирофорности полученное железо нагревают до 820 – 880 °С с последующим охлаждением в восстановительной или нейтральной атмосфере.
4.2.4 Химико-термический способ получения железа
Метод представляет интерес для получения очень чистого железа из труднообогатимого рудного сырья, содержащего большое количество вредных примесей. Он может быть использован также для получения легированной железной губки из комплексных руд.
Сущность метода заключается в следующем. Железорудный материал подвергается восстановительному обжигу. Полученный продукт обрабатывают технической соляной кислотой, в результате чего железо переходит в раствор в виде хлорида, а пустая порода и другие нерастворимые компоненты остаются в осадке. Раствор отделяют от осадка фильтрацией и подвергают кристаллизации. Полученные кристаллы направляются на восстановление газообразным восстановителем.
Схема технологического процесса получения железа по этому методу включает следующие операции (рисунок 19).
Усредненная на рудном дворе руда поступает в дробильное отделение, а затем в печь обжига. Для ускорения процесса обжиг руды проводится с использованием твердого восстановителя. Для этого приёмные бункеры мельниц оборудуются дозаторами для приготовления шихты, состоящей из руды и твердого восстановителя.
Подготовленная шихта поставляется в печь для восстановительного обжига. Обжиг проводится при температуре 900 – 1000 °С.
После обжига руда поступает в реакторы растворения руды, заполненные соляной кислотой. Начальная стадия растворения происходит очень бурно и сопровождается выделением водорода. По мере снижения концентрации кислоты и сокращения поверхности твердой фазы скорость реакции растворения падает. Для ускорения процесса на конечном этапе реакционный объём подогревается паром с температурой 80 – 90 °С, подаваемом в паровые рубашки реакторов. Выделяющийся при растворении водород после очистки направляется в печь восстановления хлоридов, где используется как газообразный восстановитель. Пары соляной кислоты, сконденсировавшиеся в процессе растворения, поступают в систему сбора кислоты, откуда направляются в реактор растворения.
Полученная в результате растворения пульпа подаётся в фильтры для отделения раствора от нерастворимого остатка. Отфильтрованный раствор поступает в выпарные аппараты, где проводится выпаривание до насыщения по хлористому железу. Далее раствор направляется в кристаллизаторы, из которых смесь кристаллов и раствора подается на центрифуги.
Из центрифуг кристаллы направляются в печь сушки и затем в печь восстановления хлоридов, отапливающуюся природным газом. Для восстановления хлоридов используется водород. Температура восстановления составляет 600 – 700 °С.
Отходящий из печей газ, содержащий водород и пары воды, подвергается осушке, очистки и используется как восстановитель при восстановлении хлоридов. Кислота, образующаяся в результате охлаждения и очистки отходящих газов, поступает в систему сбора соляной кислоты, откуда направляется в реакторы растворения руды.
Таким образом, для данного способа характерно оборотное использование соляной кислоты и водорода. Потери кислоты восполняются за счет периодического введения в процесс свежей кислоты, а потери водорода за счет введения водорода, вырабатываемого водородной станцией.
По этому способу возможно получение очень чистого губчатого железа, с содержанием железа в губке до 99,5%. Вместе с тем, способ позволяет получать из комплексных руд, переработка которых в настоящее время ведется с большими потерями легирующих элементов, железо с регулируемым составом легирующих, путём селективного восстановления хлоридов, в результате которого происходит почти полное извлечение легирующих.
Однако, способ пока не нашёл промышленного применения. В перспективе способ может быть использован для получения железа непосредственно из месторождения руд. При этом в разведанное месторождение закачивается соляная кислота, железо растворяется, образуя хлориды железа. Раствор поднимает-ся на поверхность, обезвоживается, и полученные кристаллы хлоридов восстанавливаются до чистого железа.