
- •4. А)Понятие минора к-го порядка. Б)Ранг матрицы(определение).В)Вычисление ранга матрицы с помощию элементарных преодразований.Пример.
- •5. А)Линейная независимость столбцов (строк) матрицы. Б)Теорема о ранге матрицы.
- •2. А)Определители 2-го,3-го и п-го порядков (определения и из св-ва). Б)Теорема Лапласа о разложении определителя по элементам строки или столбца.
- •3.А)Квадратная матрица и ее определитель. Б)Особенная и неособенная квадратные матрицы. В)Присоединенная матрица. Г)Матрица, обратная данной, и алгоритм ее вычисления.
- •9. А) метод Гаусса решения системы п-линейных ур-ний с п переменными. Б)Понятие о методе Жордана-Гаусса.
- •27. А)Общее ур-ние прямой на плоскости, его исследование. Б)Условия || и ┴прямых.
- •6.Векторы операции над векторами .N мерный вектор понятие о его базисе.
- •12 Система линейных однородных уравнений и ее решения.Условие существования ненулевых решений систем.
- •14.Скалярное произведение 2 векторов и его выражение в координатной форме. Угол мжду векторами.
- •16.Векторное пространство ,его размерность и базис .
- •17.Скалярное произведение векторов в n-мерном пространстве.Евклидово пространства. Длина(норма ) вектора
- •18. Ортогональне векторы.Ортогональный и ортонормированный базисы.
- •19.Определение оператора . Понятие линейного оператора.Образ и прообраз векторов.
- •20.Матрица линейного оператора в заданном базисе:связь между вектором х и образом у.Ранг оператора…
- •26. А) Уравнение линии на плоскости. Б)Точка пересечения двух линий.В) Огсновные виды уравнений прямой на плоскости (одно из них вывести).
- •23.Квадратичная форма.Матрица квадатичной формы.Ранг квадратичной формы.
- •24.Квадратичная форма(канонический вид).Приведение квадратичной формы к каноническому виду…
- •25. Положительно и отрицательно определенная,знакоопределенная квадратичные формы .Критерии знакоопределенности квадратичной формы .
- •28. Кривые 2-го порядка,их общее уравнение. Номальное уравнение окружности.Кноническое уровнение эллипса .Геометрический смысл параметров окружности и элипса.
- •29.Каоническое уравнение гиперболы и параболы.Уравнение асимптот гиперболы .График обратно-пропорциональной зависимости и квадратного трехчлена.
- •30. Общее уравнение плоскости в пространстве и его частные случаи. Норм. Вектор плоскости.Условия параллельности и перпендикулярности 2 плоскостей.
28. Кривые 2-го порядка,их общее уравнение. Номальное уравнение окружности.Кноническое уровнение эллипса .Геометрический смысл параметров окружности и элипса.
Общее уравнение: Ах2+Ау2+Dx+Ex+F=0, 2) (x-x0)в квадрате + (y-y0) в квадрате= R2 Кривая 2 порядка называется эллипсом. Уравнение эллипса- x2/a2+y2/b2=1
29.Каоническое уравнение гиперболы и параболы.Уравнение асимптот гиперболы .График обратно-пропорциональной зависимости и квадратного трехчлена.
. ур-е гиперболы: x2/a2 – y2/b2=1, ур-е асимптот гиперболы y=+(-)b/a*x. Парабола : y=Ax2,где А= 1/2p. Квдратный трехчлен : y=Ax2+Bx+c(A не = 0)
30. Общее уравнение плоскости в пространстве и его частные случаи. Норм. Вектор плоскости.Условия параллельности и перпендикулярности 2 плоскостей.
A(x – x0) + B(y – y0) + C ( z – z0)=0,-уравнение плоскости перпендекулярной данному вектору n=(A, B ,C ) и проходящий через данную точку Mo(xo, yo, zo.). Общее уравнение плоскости
D = -A xo-B yo –C zo.. Условием параллельности 2 плоскостей является пропорциональность коэффициентов при одноименных переменных : A1/A2=B1/B2=C1/C2, а условием их перпендикулярности A1A2+B1B2+C1C2= 0