
- •Вопрос 1
- •2. Единицы измерения данных
- •2 Вопрос
- •3 Вопрос. Кодирование текстовых и графических данных
- •2) Если частное не равно нулю, то разделить его на 2 и т.Д. Пока частное не станет равно 0. Если частное 0, то записать все полученные остатки, начиная с первого с права на лево.
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6 Уровни программного обеспечения
- •7 Вопрос. Базовая аппаратная конфигурация пк
- •Вопрос 8 Внутреннее устройство системного блока
- •«Начинка» системного блока
- •Вопрос 10
- •Вопрос 11
- •Функции
- •Вопрос 12
- •Вопрос 13 Компьютерные сети делятся на три основных класса:
- •Виды локальных сетей:
- •Вопрос 14
- •15 Вопрос.
- •16 Вопрос. Типы линий связи
- •По методу размножения
- •18 Вопрос.
- •19 Вопрос. Протоколы Интернета.
- •Краткое описание протоколов
- •2.1.1. Машинный язык
- •2.1.2. Языки Символического Кодирования
- •2.1.3. Автокоды
- •2.1.4. Макрос
- •2.2. Машинно – независимые языки
- •2.2.1. Проблемно – ориентированные языки
- •2.2.2. Универсальные языки
- •2.2.3. Диалоговые языки
- •2.2.4. Непроцедурные языки
2 Вопрос
Позиционная систе́ма счисле́ния (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).
1. Базис, алфавит, основание.
Система счисления - способ записи (изображения) чисел.
Символы, при помощи которых записывается число, называются цифрами.
Системы счисления, в которых количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа, называются позиционными.
Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.
Базисом позиционной системы счисления называется последовательность чисел, каждое из которых задает количественное значение или "вес" каждого разряда.
Например: Базисы некоторых позиционных систем счисления.
Десятичная система: 100, 101, 102, 103, 104, ..., 10n, ...Двоичная система: 20, 21, 22, 23, 24, ..., 2n, ...Восьмеричная система: 80, 81, 82, 83, 84, ..., 8n, ...
Совокупность различных цифр, используемых в позиционной системе счисления для записи чисел, называется алфавитом системы счисления. Количество цифр в алфавите равно основанию системы счисления.
Например: Алфавиты некоторых позиционных систем счисления.
Десятичная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Двоичная система: {0, 1}
Восьмеричная система: {0, 1, 2, 3, 4, 5, 6, 7}
Пятнадцатеричная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E}
При переводе чисел из десятичной системы счисления в систему с основанием P>1 обычно используют следующий алгоритм:
1) если переводится целая часть числа, то она делится на P, после чего запоминается остаток от деления. Полученное частное вновь делится на P, остаток запоминается. 2) если переводится дробная часть числа, то она умножается на P, после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Целые части выписываются после двоичной запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P.
Примеры решения задач
1. Перевести данное число из десятичной системы счисления в двоичную:
а) 464(10); б) 380,1875(10); в) 115,94(10) (получить пять знаков после запятой в двоичном представлении).
Решение.
464 | 0 380 | 0 |1875 115 | 1 |94
232 | 0 190 | 0 0|375 57 | 1 1|88
116 | 0 95 | 1 0|75 28 | 0 1|76
58 | 0 47 | 1 1|5 14 | 0 1|52
а) 29 | 1 б) 23 | 1 1|0 в) 7 | 1 1|04
14 | 0 11 | 1 3 | 1 0|08
7 | 1 5 | 1 1 | 1 0|16
3 | 1 2 | 0
1 | 1 1 | 1
а) 464(10)=111010000(2); б) 380,1875(10)=101111100,0011(2); в) 115,94(10)»1110011,11110(2) (в настоящем случае было получено шесть знаков после запятой, после чего результат был округлен).
В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа. Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.
Римская система счисления. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum — сто, Demimille — половина тысячи, Мille — тысяча).
Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:
XXVIII=10+10+5+1+1+1 (три десятка, пяток, три единицы).
Например, IX — обозначает 9, XI — обозначает 11.
Десятичное число 28 представляется следующим образом:
XXVIII=10+10+5+1+1+1,
а десятичное число 99 имеет вот такое представление: XCIХ=-10+100-1+10.