
- •Вопрос 1
- •2. Единицы измерения данных
- •2 Вопрос
- •3 Вопрос. Кодирование текстовых и графических данных
- •2) Если частное не равно нулю, то разделить его на 2 и т.Д. Пока частное не станет равно 0. Если частное 0, то записать все полученные остатки, начиная с первого с права на лево.
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6 Уровни программного обеспечения
- •7 Вопрос. Базовая аппаратная конфигурация пк
- •Вопрос 8 Внутреннее устройство системного блока
- •«Начинка» системного блока
- •Вопрос 10
- •Вопрос 11
- •Функции
- •Вопрос 12
- •Вопрос 13 Компьютерные сети делятся на три основных класса:
- •Виды локальных сетей:
- •Вопрос 14
- •15 Вопрос.
- •16 Вопрос. Типы линий связи
- •По методу размножения
- •18 Вопрос.
- •19 Вопрос. Протоколы Интернета.
- •Краткое описание протоколов
- •2.1.1. Машинный язык
- •2.1.2. Языки Символического Кодирования
- •2.1.3. Автокоды
- •2.1.4. Макрос
- •2.2. Машинно – независимые языки
- •2.2.1. Проблемно – ориентированные языки
- •2.2.2. Универсальные языки
- •2.2.3. Диалоговые языки
- •2.2.4. Непроцедурные языки
Вопрос 1
Данные в информатике - , информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи. Свойства информации Объективность и субъективность информации. Понятие объективности информации является относительным. Это понятно, если учесть, что методы являются субъективными. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент. Полнота информации. Полнота информации во многом характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся. Чем полнее данные, тем шире диапазон методов, которые можно использовать, тем проще подобрать метод, вносящий минимум погрешностей в ход информационного процесса.
Достоверность информации. Данные возникают в момент регистрации сигналов, но не все сигналы являются «полезными» — всегда присутствует какой-то уровень посторонних сигналов, в результате чего полезные данные сопровождаются определенным уровнем «информационного шума». Адекватность информации — это степень соответствия реальному объективному состоянию дела. Доступность информации — мера возможности получить ту или иную информацию. Актуальность информации — это степень соответствия информации текущему моменту времени. Измерение информации
Содержательный подход к измерению информации. Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику
Алфавитный подход к измерению информации не связывает кол-во информации с содержанием сообщения. Алфавитный подход - объективный подход к измерению информации. Он удобен при использовании технических средств работы с информацией, т.к. не зависит от содержания сообщенияВероятностный подход к измерения информации. Все события происходят с различной вероятностью, но зависимость между вероятностью событий и количеством информации, полученной при совершении того или иного события можно выразить формулой которую в 1948 году предложил Шеннон.Формула Шеннона
I - количество информации N – количество возможных событий pi – вероятности отдельных событий
Единицы измерения данных
2. Единицы измерения данных
Объем данных (V) – количество байт, которое требуется для их хранения в памяти электронного носителя информации.
Память носителей в свою очередь имеет ограниченную ёмкость, т.е. способность вместить в себе определенный объем.
Бит — базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос). Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено/выключено, и т. п. В электронике 1 двоичному разряду соответствует 1 двоичный триггер, который имеет два устойчивых состояния.
Байт (англ. byte) — единица хранения и обработки цифровой информации. В настольных вычислительных системах байт считается равным восьми битам, в этом случае он может принимать одно из 256 (28) различных значений. Следует понимать, что количество бит в байте не является однозначной величиной и может варьироваться в широком диапазоне. Так, в первых компьютерах размер байта был равен 6 битам. В суперкомпьютерах, вследствие используемой адресации, один байт содержит 32 бита. Для того, чтобы подчеркнуть, что имеется в виду восьмибитный байт, а также во избежание широко распростанённого заблуждения, что в одном байте исключительно восемь бит, в описании сетевых протоколов используется термин «октет» (лат. octet). Байт в современных x86-совместимых компьютерах — это минимально адресуемый набор фиксированного числа битов.
Килоба́йт (кБ, Кбайт, КБ) м., скл. — единица измерения количества информации, равная в зависимости от контекста 1000 или 1024 (210) стандартным (8-битным) байтам. Применяется для указания объёма памяти в различных электронных устройствах.
1 килобайт (КБ) = 8 килобит (Кб)
Название «килобайт» часто применяется для 1024 байт, но формально неверно, так как приставка кило-, традиционно означает умножение на 1000, а не 1024. Согласно предложению МЭК, формально правильной (хотя и относительно редко используемой) для 210 является двоичная приставка киби-.
Исторически сложилось, что со словом «байт» несколько некорректно (вместо 1000 = 103 принято 1024 = 210) использовали и продолжают использовать приставки СИ: 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т. д. При этом обозначение Кбайт начинают с прописной буквы в отличие от строчной буквы «к» для обозначения множителя 103.
Мегаба́йт (Мбайт, М, МБ) м., скл. — единица измерения количества информации, равная, в зависимости от контекста, 1 000 000 (106) или 1 048 576 (220) стандартным (8-битным) байтам. Сокращенное название МБ отличается от Мегабита (Мб) строчной буквой (но на самом деле иногда происходит некоторая путаница в сокращениях). Применяется для указания объёма памяти в различных электронных устройствах.
Гигабайт (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартным (8-битным) байтам или 1 000 000 000 байтам. Применяется для указания объёма памяти в различных электронных устройствах. От сложившегося положения нередко страдают потребители продукции крупных корпораций, производящих жёсткие диски и карты флэш-памяти. Приобретая изделие, в маркировке которого указана его реальная емкость, например, 1 гигабайт или 1 000 000 000 байт они полагают, что приобретают изделие емкостью 1 гибибайт или 1 073 741 824 байт, что нередко приводит к непониманию и недовольству.
Байт- мельчайшая адресуемая единица информации
Килобайт – базовая единица
Машинное слово - машиннозависимая и платформозависимая величина, измеряемая в битах или байтах , равная разрядности регистров процессора и/или разрядности шины данных. На ранних компьютерах размер слова совпадал также с минимальным размером адресуемой информации (разрядностью данных, расположенных по одному адресу); на современных компьютерах минимальным адресуемым блоком информации обычно является байт, а слово состоит из нескольких байтов. Машинное слово определяет следующие характеристики аппаратной платформы:
разрядность данных, обрабатываемых процессором;
разрядность адресуемых данных (разрядность шины данных);
максимальное значение беззнакового целого типа, напрямую поддерживаемого процессором: если результат арифметической операции превосходит это значение, то происходит переполнение;
максимальный объём оперативной памяти, напрямую адресуемой процессором.
Кластер — в некоторых типах файловых систем логическая единица хранения данных в таблице размещения файлов, объединяющая группу секторов. Как правило, это наименьшее место на диске, которое может быть выделено для хранения файла.
Се́ктор диска — минимальная адресуемая единица хранения информации на дисковых запоминающих устройствах. Является частью дорожки диска. У большинства устройств размер сектора составляет 512 байт, либо 2048 байт (например, у оптических дисков).
Для более эффективного использования места на диске файловая система может объединять секторы в кластеры, размером от 512 байт (один сектор) до 64 кбайт (128 секторов). Переход к кластерам произошел потому, что размер таблицы FAT был ограничен, а размер диска увеличивался. Количество секторов на цилиндрах ранее было одинаковым, на современных дисках количество секторов на цилиндр разное, но контроллер жёсткого диска сообщает о некоем условном количестве дорожек, секторов и сторон, хотя позднее была создана система обращения к дискам, в которой все секторы пронумерованы. Первый сектор диска обычно является загрузочным.
Понятие кластер используется в файловых системах FAT и NTFS.
Существует много различных систем и единиц измерения данных. Каждая научная дисциплина и каждая область человеческой деятельности может использовать свои, наиболее удобные или традиционно устоявшиеся единицы. В информатике для измерения данных используют тот факт, что разные типы данных имеют универсальное двоичное представление, и потому вводят свои единицы данных, основанные на нем.
Наименьшей единицей измерения является байт. Поскольку одним байтом, как правило, кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объему в символах (пока исключение представляет рассмотренная выше универсальная кодировка UNICODE).
Более крупная единица измерения — килобайт (Кбайт). Условно можно считать, что 1 Кбайт примерно равен 1000 байт. Условность связана с тем, что для вычислительной техники, работающей с двоичными числами, более удобно представление чисел в виде степени двойки, и потому на самом деле 1 Кбайт равен 210 байт (1024 байт). Однако всюду, где это не принципиально, с инженерной погрешностью (до 3 %) “забывают” о “лишних” байтах.
В килобайтах измеряют сравнительно небольшие объемы данных. Условно можно считать, что одна страница неформатированного машинописного текста составляет около 2 Кбайт.
Более крупные единицы измерения данных образуются добавлением префиксов мега-, гига-, тера-; в более крупных единицах пока нет практической надобности.
1 Мбайт = 1024 Кбайт = 1020 байт
1 Гбайт = 1024 Мбайт = 1030 байт
1 Тбайт = 1024 Гбайт = 1040 байт
Особо обратим внимание на то, что при переходе к более крупным единицам “инженерная” погрешность, связанная с округлением, накапливается и становится недопустимой, поэтому на старших единицах измерения округление производится реже.
Единицы хранения данныхПри хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом, как мы уже знаем, образуется “паразитная нагрузка” в виде адресных данных. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.
Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т. п.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.
В качестве единицы хранения данных принят объект переменной длины, называемый файлом. Файл — это последовательность произвольного числа байтов, обладающая уникальным собственным именем. Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.