
- •1.Понятие жидкости. Реальная и идеальная жидкости
- •2. Метод гидравлических исследований
- •3. Силы, действующие на жидкость. Понятие давления
- •4. Основные свойства капельных жидкостей
- •5. Гидростатическое давление и его свойство
- •7. Дифференциальные уравнения равновесия жидкости и их интегрирование для простейшего случая
- •8. Абсолютное и избыточное давление.
- •9 Пьезометрическая высота. Вакуум. Измерение давления
- •10. Основное уравнение гидростатики Потенциальная, удельная энергия жидкости.
- •14 Понятие о движении жидкости как непрерывной деформации сплошной материальной среды
- •15 .Установившееся и неустановившееся течение жидкости
- •19 Уравнение неразрывности
- •22 Геометрическая и энергетическая интерпретация уравнения Бернулли
- •24 Влияние различных факторов на движение жидкости
- •25 Понятие о подобных потоках и критериях подобия
- •26 Числа Рейнольдса, Фруда, Эйлера, Вебера
- •27 Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине)
- •28 Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси
- •29 Основное уравнение равномерного движения
- •30 Касательные напряжения. Обобщённый закон Ньютона
- •31 Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •32 Пульсации скоростей при турбулентном режиме. Мгновенная и местная осреднённые скорости
- •33 Потери напора по длине при равномерном ламинарном движении жидкости
- •34 Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном течении
- •35 Потери напора при равномерном турбулентном движении жидкости
- •36 Механизм турбуллизации потока: процесс перемешивания жидкости, ядро течения и пристенный слой
- •38 Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •39 График Никурадзе
- •40 Местные сопротивления, основные их виды
- •41. Понятие объемной гидромашины. Насосы, гидродвигатели.
- •46. Основные термины и определения
- •47. Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, коэффициент полезного действия, частота вращения, крутящий момент.
- •48. Классификация, конструктивные схемы и принцип действия огм
- •49. Шестеренные насосы с внешним и внутренним зацеплением
- •50. Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •51. Радиально-поршневые гидромашины
- •52. Аксиально-поршневые гидромашины, основные их системы
- •53.Основные понятия и определения, принцип действия. Насосный, аккумуляторный. Магистральный, следящий гидропривод. Замкнутый и разомкнутый гидропривод.
- •54. Гидродроссели и дросселирующие гидрораспределители. Постоянные дроссели . Ламинарные и и турбулентные гидрораспределители. Дроссельные регуляторы.
- •56. Струйный гидрораспределитель. Гидроклапаны. Типы клапанов переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.
- •57. Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и паралелльном включении дросселя.
- •59. Дроссельный способ регулирования огп с установкой дросселя на входе в гидродвигатель, на выходе из гидродвигателя и параллельно гидродвигателю
- •60)Основные параметры привода. Располагаемая и потребная характеристики гидропривода
- •61) Статические характеристики объемного гидропривода с дроссельным регулированием.
- •62) Энергетические характеристики гидропривода.
- •63,64) Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
46. Основные термины и определения
Насос - гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости.
Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром.
Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой.
Рабочий объем гидромашины в насосе - это объем жидкости вытесняемый в систему за один оборот вала насоса; в гидромоторе - объем жидкости, необходимый для получения одного оборота вала гидромотора. Гидромашины изготавливаются с постоянным и переменным рабочим объемом. В соответствии с этим с постоянным рабочим объемом называются нерегулируемые, а с переменным - регулируемые.
Гидролиния (магистраль) - это трубопровод, по которому транспортируется рабочая жидкость. Различают магистрали всасывающие, напорные, сливные и дренажные.
Производительность насоса (подача) - это отношение объема подаваемой жидкости ко времени.
Теоретическая производительность насоса QТ - это расчетный объем жидкости, вытесняемый в единицу времени из его полости нагнетания.
Действительная производительность насоса QД уменьшается на величину QН из-за обратного течения жидкости в насосе из полости нагнетания в полость всасывания и из-за утечки жидкости во внешнюю среду. Поэтому
QД = QТ – QН а отношение
где ηоб.н. - объемный КПД насоса.
Объемные потери и объемный КПД гидромотора. При работе машины в режиме гидромотора в приемную его полость поступает жидкость под давлением от насоса. Объемные потери в гидромоторе сводятся в основном к утечкам жидкости через зазоры между сопрягаемыми элементами. Это приводит к тому, что подводимый объем жидкости QП превышает теоретическое значение QТ. Поэтому
где ΔQМ - величина утечек в гидромоторе (объемные потери).
Мощность и крутящий момент на валу гидромотора. Фактическая мощность развиваемая гидромотором при данном перепаде давлений
NM факт = ΔPqMnMηM
где qм - рабочий объем гидромотора;
nм - частота вращения гидромотора;
ηм - общий КПД гидромотора.
Выразив крутящий момент через теоретическую мощность NТ = ΔPqn и угловую скорость ω= 2πn, получим теоретическую величину крутящего момента для гидромашины:
47. Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, коэффициент полезного действия, частота вращения, крутящий момент.
Основной величиной, определяющей размер объемного насоса (объемного гидродвигателя) является его рабочий объем.
Рабочий объем насоса, и частота его рабочих циклов определяют идеальную подачу. Идеальной подачей объемного насоса называют подачу в единицу времени несжимаемой жидкости при отсутствии утечек через зазоры. Осредненная по времени идеальная подача
где — рабочий объем насоса, т. е. идеальная подача насоса за один цикл (один оборот вала насоса); n — частота рабочих циклов насоса (для вращательных насосов частота вращения вала); — идеальная подача из каждой рабочей камеры за один цикл; г — число рабочих камер в насосе; и — кратность действия насоса, т. е. число подач из каждой камеры за один рабочий цикл (один оборот вала).
Таким образом, рабочий объем насоса
Чаще всего k=1, но в некоторых конструкциях k=2 и более.
Действительная подача насоса меньше идеальной вследствие утечек через зазоры из рабочих камер и полости нагнетания, а при больших давлениях насоса еще и за счет сжимаемости жидкости.
Отношение действительной подачи Q к идеальной называется коэффициентом подачи:
где qу — расход утечек; qсж — расход сжатия.
Когда сжатие жидкости пренебрежимо мало, коэффициент подачи равен объемному КПД насоса ():
Полное приращение энергии жидкости в объемном насосе обычно относят к единице объема и, следовательно, выражают в единицах давления. Так как объемные насосы предназначены в основном для создания значительных приращений давления, то приращением кинетической энергии в насосе обычно пренебрегают. Поэтому давление насоса представляет собой разность между давлением на выходе из насоса и давлением на входе в него:
а напор насоса
Полезная мощность насоса
Мощность, потребляемая вращательным насосом (затрачиваемая приводящим двигателем),
где — момент на валу насосав, — угловая скорость его вала.
КПД насоса есть отношение полезной мощности к мощности, потребляемой насосом
Подобно тому, как это принято для лопастных насосов, для объемных насосов различают гидравлический , объемный и механический КПД, учитывающие три вида потерь энергии: гидравлические — потери напора (давления), объемные — потери на перетекание жидкости через зазоры, и механические — потери на трение в механизме насоса:
где — индикаторное давление, создаваемое в рабочей камере насоса и соответствующее теоретическому напору в лопастном насосе; — потери мощности на трение в механизме насоса; — индикаторная мощность, сообщаемая жидкости в рабочей камере и соответствующая гидравлической мощности в лопастных насосах. Получим
т. е. КПД насоса (общий) равен произведению трех частных КПД —гидравлического, объемного и механического.