
- •Вопросы к экзамену по курсу «Геофизические исследования скважин» (для геологов)
- •1.Задачи решаемые геофизическими методами в разведочных и эксплуатационных скважинах
- •2.Вклад отечественных ученых в развитие методов интерпретации гис
- •3.Информационная модель гис.(диаграмму нарисовать)
- •4.Плотность горных пород и ее связь с главными геофиз параметрами.(два графика)
- •5.Глинистость коллекторов и ее влияние на главные геофиз параметры. (графики)
- •6.Пористость коллекторов и ее влияние на главные геофиз параметры.
- •7.Проницаемость коллекторов и ее влияние на главные геофиз параметры
- •8.Водонасыщенность и нефтегазонасысещенность коллекторов и их связь с геофизич. Параметрами
- •9.Значение методов гис в обеспечении высоких темпов развития нефтяной и газовой промышленности( можете каждый для себя посмотреть что-то еще)
- •10.Удельное электрическое сопротивление неглинистых пород и его зависимость от различных факторов (Кп, Кв и др)
- •11.Удельное электрическое сопротивление глинистых пород и его зависимость от различных факторов (Кп, Кв и др)
- •12.Удельное электрическое сопротивление пород со сложной структурой порового пространства.
- •13.Петрофизическая характеристика объекта исследования при наличии скважины, вскрывающей пласт (на примере метода сопротивлений)
- •14. Комплекс методов сопротивления, применяющееся для изучения коллекторов нефти и газа.
- •15.Изменение кажущегося сопротивления обычными нефокусированными зондами. Связь кажущегося сопротивления с истинным.
- •16. Поле точечного электрода в однородной среде
- •17. Классификация трехэлектродных нефокусированных зондов
- •19. Теор. Кривые кс в пластах различной толщины низкого сопротивления (нужно дописывать формулы и дорисовывать все из тетрадки)
- •20. Теор. Кривые кс, получаемые против пачек пластов высокого сопротивления.
- •21. Влияние скважины, заполненной п.Ж., на каж. Сопротивление. Влияние зоны проникновения.
- •22. Эффекты экранирования тока и их влияние на характер кривых гис.
- •23. Влияние зоны проникновения фильтрата п.Ж. На показания осн. Методов гис
- •24. Способы опр-я границ пластов по диаграммам электрометрии.
- •25. Влияние неидеальных зондов на кривые кс.
- •26. Общие принципы интерпретации данных бэз.
- •27. Типы кривых бэз.
- •28. Метод микрозондов, как средство выделение фильтрующих коллекторов.
- •29. Экранированные микро- и макрозонды. Принцип регистрации диаграмм.
- •30. Интерпретация диаграмм экранированных зондов.
- •31. Совместное влияние толщины пласта и скважины на величины кс. Измеренных трёхэлектродными нефокусированными зондамим ( пласт ограниченной толщины).
- •32. Способы измерения и определения удельного сопротивления промывочной жидкости по данным гис.
- •33. Физические основы индукционного метода. Индукционные зонды.
- •33. (Другой вариант) Физические основы индукционного метода. Индукционные зонды.
- •34. Определение удельного сопротивление пластов по диаграммам индукционного зонда.
- •35. Викиз
- •36. Определение диаметра скважины. Его влияние на показания основных методов гис.
- •37. Влияние скин-эффекта и скважины на показание индукционного метода.
- •38. Диффузионно-абсорбционная активность и её связь с литологическими особенностями горных пород.
- •39. Физические основы метода потенциалов собственной поляризации.
- •41.Геологическая интерпретация метода сп. Определение удельного электрического сопротивления пластовых вод.
- •42.Роль и значение метода сп в комплексе гис.
- •Области применения пс
- •43.Выделение коллекторов по диаграммам метода сп. Определение глинистости.
- •44. Фильтрационные потенциалы.
- •45. Окислительно-восстановительные потенциалы.
- •46. Физические основы метода диэлектрической проницаемости.
- •47. Геологическая интерпретация диаграмм метода диэлектрической проницаемости.
- •48. Разновидности диэлектрического метода. Принципы измерения в волновом диэлектрическом методе вдм
- •49. Радиоактивные излучения. Взаимодействие γ-квантов с веществом.
- •Взаимодействие γ-квантов с веществом.
- •50. Взаимодействие нейтронов с веществом. Нейтронные св-ва пород
- •51. Техника регистрации диаграмм в радиометрии.
- •52. Физ.Основы метода естественной радиоактивности
- •53. Интерпретация диаграмм гм. Определение глинистости.
- •54. Использование γ и n излучения в геофизике. Классификация методов радиометрии.
- •55. Общие особенности диаграмм методов радиометрии. Определение границ пластов.
- •56. Физические основы метода рассеянного γ-излучения. Ггм-п и ггм-с
- •57. Определение плотности и пористости по ггм.
- •58. Физические основы нгм и ннм. Нейтронный свойства г.П.
- •59. Физ.Основы импульсных нейтронных методов. Аппаратура для проведения инм.
- •60. Интерпретация диаграмм инм. Определение коэф.Нефтенасыщенности.
- •61. Влияние длины зонда на характер диаграмм нм.
- •62. Интерпретация диаграмм нм. Определение нейтронной пористости.
- •63. Изучение времени жизни тепловых нейтронов. Области применения инм.
- •64. Ингм. Основа теории и интерпретации результатов скважинных исследований.
- •65. Упругие свойства г.П.
- •66. Классификация ак.Задачи, решаемые акустическим методом:
- •67. Физические основы акустических методов. Аппаратура.
- •68. Обработка и интерпретация ам. Определение Кп
- •69. Широкополосный ак (низкочастотный), акустический метод. Решаемые задачи и область применения.
- •1. Определение литологии пород
- •3. Определение преимущественной ориентации трещин
- •4. Определение проницаемости
- •5. Определение характера насыщения коллекторов
- •70. Физические основы ядерно-магнитного метод. Принцип измерения.
- •71. Определение эффективной пористости и характера насыщения по данным ядерно-магнитного метода.
- •72. Определение характера насыщения коллекторов. Разделение газоносных и нефтеносных коллекторов в разрезе скважин.
- •73. Определение положения контактов (внк, гвк, гнк) по геофизическим данным. Контроль за положением внк в процессе эксплуатации скважин.
64. Ингм. Основа теории и интерпретации результатов скважинных исследований.
При импульсных нейтронных методах источник испускает нейтроны в течение сравнительно коротких интервалов времени ∆Т<100 — 200 мкс. Такие импульсы источника повторяются периодически с периодом Т=10-3— 10-1 с -1 , т.е. 10—103 раз в 1 с.
С помощью специальной схемы — временного анализатора регистрация излучения осуществляется не непрерывно, а лишь в некоторые (специально выбранные) интервалы времени.
В настоящее время получили применение две модификации импульсных нейтронных методов — с регистрацией тепловых нейтронов (ИННМ) и гамма-квантов радиационного захвата (ИНГМ). Регистрация нейтронов (и гамма-квантов) в этих методах осуществляется в интервале между двумя импульсами источника через некоторое время задержки после каждого импульса, составляющее от нескольких сотен до двух-трех тысяч микросекунд.
Быстрые нейтроны, испускаемые импульсным источником, замедляются до тепловой энергии в среднем за время, составляющее не более нескольких десятков микросекунд, и при дальнейшей диффузии поглощаются ядрами среды. После окончания процесса замедления плотности нейтронов и гамма-квантов радиационного захвата уменьшаются во времени примерно
n=n0*e-t/
Регистрируя гамма-кванты (ИНГМ) при двух значениях времени задержки или более, можно определить среднее время жизни тепловых нейтронов в горной породе , которое, как указывалось выше, позволяет судить о концентрации элементов, имеющих высокое сечение поглощения тепловых нейтронов.
Импульсы источника повторяются через небольшое время (обычно 10 — 400 раз в 1 с) и при ИННМ (ИНГМ) регистрируется интенсивность тепловых нейтронов (гамма-квантов) для некоторого значения времени задержки , усредненная по большому числу импульсов источника. Измерения при ИННМ (ИНГМ) выполняют либо при движении прибора по стволу скважины (и в результате получают непрерывные диаграммы для двух-трех каналов с различными значениями времени задержки), либо иногда при неподвижном приборе (на точках) для повышения точности.
В первом случае о значении судят по отношению показаний на двух каналах: чем меньше , тем больше различаются эти показания. Количественное определение получают по формуле (предполагается, что ширина «окон» ∆t в обоих каналах одинакова)
где t1 t2 и — время задержки для двух каналов; I1 и I2— показания (скорость счета) для тех же каналов.
Разработана аппаратура для непрерывного вычисления в процессе замеров и получения непосредственно диаграмм изменения по стволу скважины. В случае измерений на точках (с неподвижным прибором) интенсивность нейтронов или гамма-квантов обычно определяют при большом числе значений времени задержки ti (i = 1, 2,...) и строят график зависимости логарифма показаний lnI от t .Такой график позволяет точнее определить значение как величину, обратную коэффициенту наклона кривой 1nI = f(t) при больших t.
При малых временах задержки t ( наклон кривой зависит (кроме ) также от диаметра скважины и свойств среды, заполняющей скважину. При больших значениях t такое влияние постепенно исчезает, что является преимуществом импульсных методов. Другое их преимущество заключается в большей по сравнению со стационарными методами чувствительности к содержанию элементов, сильно поглощающих нейтроны. В нефтяных и газовых скважинах это позволяет различать продуктивные и водоносные пласты при сравнительно малой минерализации пластовых вод (от 20 — 30 г/л). При большей минерализации вод решение этой задачи возможно даже по результатам измерения при одном значении времени задержки. При прочих равных условиях водоносные пласты отмечаются гораздо меньшими показаниями ИННМ при больших временах задержки t по сравнению с нефтеносными и газоносными пластами.
При ИНГМ влияние скважины несколько меньше, чем при ИННМ, но преимуществом последнего является отсутствие влияния естественного гамма-излучения, доля которого при ИНГМ на больших временах задержки значительна. Точка записи зонда ИННМ и ИНГМ совпадает с серединой детектора.