
- •Вопросы к экзамену по курсу «Геофизические исследования скважин» (для геологов)
- •1.Задачи решаемые геофизическими методами в разведочных и эксплуатационных скважинах
- •2.Вклад отечественных ученых в развитие методов интерпретации гис
- •3.Информационная модель гис.(диаграмму нарисовать)
- •4.Плотность горных пород и ее связь с главными геофиз параметрами.(два графика)
- •5.Глинистость коллекторов и ее влияние на главные геофиз параметры. (графики)
- •6.Пористость коллекторов и ее влияние на главные геофиз параметры.
- •7.Проницаемость коллекторов и ее влияние на главные геофиз параметры
- •8.Водонасыщенность и нефтегазонасысещенность коллекторов и их связь с геофизич. Параметрами
- •9.Значение методов гис в обеспечении высоких темпов развития нефтяной и газовой промышленности( можете каждый для себя посмотреть что-то еще)
- •10.Удельное электрическое сопротивление неглинистых пород и его зависимость от различных факторов (Кп, Кв и др)
- •11.Удельное электрическое сопротивление глинистых пород и его зависимость от различных факторов (Кп, Кв и др)
- •12.Удельное электрическое сопротивление пород со сложной структурой порового пространства.
- •13.Петрофизическая характеристика объекта исследования при наличии скважины, вскрывающей пласт (на примере метода сопротивлений)
- •14. Комплекс методов сопротивления, применяющееся для изучения коллекторов нефти и газа.
- •15.Изменение кажущегося сопротивления обычными нефокусированными зондами. Связь кажущегося сопротивления с истинным.
- •16. Поле точечного электрода в однородной среде
- •17. Классификация трехэлектродных нефокусированных зондов
- •19. Теор. Кривые кс в пластах различной толщины низкого сопротивления (нужно дописывать формулы и дорисовывать все из тетрадки)
- •20. Теор. Кривые кс, получаемые против пачек пластов высокого сопротивления.
- •21. Влияние скважины, заполненной п.Ж., на каж. Сопротивление. Влияние зоны проникновения.
- •22. Эффекты экранирования тока и их влияние на характер кривых гис.
- •23. Влияние зоны проникновения фильтрата п.Ж. На показания осн. Методов гис
- •24. Способы опр-я границ пластов по диаграммам электрометрии.
- •25. Влияние неидеальных зондов на кривые кс.
- •26. Общие принципы интерпретации данных бэз.
- •27. Типы кривых бэз.
- •28. Метод микрозондов, как средство выделение фильтрующих коллекторов.
- •29. Экранированные микро- и макрозонды. Принцип регистрации диаграмм.
- •30. Интерпретация диаграмм экранированных зондов.
- •31. Совместное влияние толщины пласта и скважины на величины кс. Измеренных трёхэлектродными нефокусированными зондамим ( пласт ограниченной толщины).
- •32. Способы измерения и определения удельного сопротивления промывочной жидкости по данным гис.
- •33. Физические основы индукционного метода. Индукционные зонды.
- •33. (Другой вариант) Физические основы индукционного метода. Индукционные зонды.
- •34. Определение удельного сопротивление пластов по диаграммам индукционного зонда.
- •35. Викиз
- •36. Определение диаметра скважины. Его влияние на показания основных методов гис.
- •37. Влияние скин-эффекта и скважины на показание индукционного метода.
- •38. Диффузионно-абсорбционная активность и её связь с литологическими особенностями горных пород.
- •39. Физические основы метода потенциалов собственной поляризации.
- •41.Геологическая интерпретация метода сп. Определение удельного электрического сопротивления пластовых вод.
- •42.Роль и значение метода сп в комплексе гис.
- •Области применения пс
- •43.Выделение коллекторов по диаграммам метода сп. Определение глинистости.
- •44. Фильтрационные потенциалы.
- •45. Окислительно-восстановительные потенциалы.
- •46. Физические основы метода диэлектрической проницаемости.
- •47. Геологическая интерпретация диаграмм метода диэлектрической проницаемости.
- •48. Разновидности диэлектрического метода. Принципы измерения в волновом диэлектрическом методе вдм
- •49. Радиоактивные излучения. Взаимодействие γ-квантов с веществом.
- •Взаимодействие γ-квантов с веществом.
- •50. Взаимодействие нейтронов с веществом. Нейтронные св-ва пород
- •51. Техника регистрации диаграмм в радиометрии.
- •52. Физ.Основы метода естественной радиоактивности
- •53. Интерпретация диаграмм гм. Определение глинистости.
- •54. Использование γ и n излучения в геофизике. Классификация методов радиометрии.
- •55. Общие особенности диаграмм методов радиометрии. Определение границ пластов.
- •56. Физические основы метода рассеянного γ-излучения. Ггм-п и ггм-с
- •57. Определение плотности и пористости по ггм.
- •58. Физические основы нгм и ннм. Нейтронный свойства г.П.
- •59. Физ.Основы импульсных нейтронных методов. Аппаратура для проведения инм.
- •60. Интерпретация диаграмм инм. Определение коэф.Нефтенасыщенности.
- •61. Влияние длины зонда на характер диаграмм нм.
- •62. Интерпретация диаграмм нм. Определение нейтронной пористости.
- •63. Изучение времени жизни тепловых нейтронов. Области применения инм.
- •64. Ингм. Основа теории и интерпретации результатов скважинных исследований.
- •65. Упругие свойства г.П.
- •66. Классификация ак.Задачи, решаемые акустическим методом:
- •67. Физические основы акустических методов. Аппаратура.
- •68. Обработка и интерпретация ам. Определение Кп
- •69. Широкополосный ак (низкочастотный), акустический метод. Решаемые задачи и область применения.
- •1. Определение литологии пород
- •3. Определение преимущественной ориентации трещин
- •4. Определение проницаемости
- •5. Определение характера насыщения коллекторов
- •70. Физические основы ядерно-магнитного метод. Принцип измерения.
- •71. Определение эффективной пористости и характера насыщения по данным ядерно-магнитного метода.
- •72. Определение характера насыщения коллекторов. Разделение газоносных и нефтеносных коллекторов в разрезе скважин.
- •73. Определение положения контактов (внк, гвк, гнк) по геофизическим данным. Контроль за положением внк в процессе эксплуатации скважин.
27. Типы кривых бэз.
1Тип. Двухслойные кривые зондирования – наблюдаются
Против непроницаемых пластов большой толщины (пласты неколлекторы)
В пластах-коллекторах при очень глубокой зоне проникновения
В пластах-коллеторах, когда сопротивление в ЗП становится равным сопроивлению в нетронутой части пласта.
2 Тип. Трехслойные кривые – наблюдаются при проникновении фильтрата бурового раствора, понижающего сопротивление пласта. Этот тип кривых характерен для мощных пластов-коллекторов, когда сопротивление пласта в зоне проникновения фильтрата бурового раствора рзп меньше истинного сопротивления пласта рп (рзп <рп). Этот тип кривх моет отмечаться в проницаемых водоносных пластах, если удельное сопротивление фильтрата бурового раствора меньше удельного сопротивления пластовой воды.
3 Тип. Трёхслойные кривые, наблюдаются при проникновении фильтрата бурового раствора, повышающего сопротивление пласта. Кривые характерны для мощных пластов-коллекторов при условии, что сопротивление пласта в зоне проникновения фильтрата бурового раствора рзп больше истинного сопротивление пласта рп (рзп> рп).
4 Тип. наблюдается в тонких пластах высокого удельного сопротивления при отсутствии или при наличии проникновения фильтрата бурового раствора в пласт. Таким образом, литологически это могут быть как плотные, так и проницаемые пласты. Для интерпретации этих кривых применяются палетки ЭКЗ (экстремальные кривые зондирования).
Палетки получены путем моделирования электрического поля на электроинтеграторе.
Рис.
14.
Типы
кривых
бокового электрического
зондирования.
Кривые
1 — двухслойные (1а
— сопротивление
пласта выше сопротивления бурового
раствора, 16
— сопротивление
пласта
ниже сопротивления бурового раствора),
2 — трехслойная при проникновении
фильтрата бурового раствора, снижающего
сопротивление пласта, 3 — трехслойная
при
проникновении фильтрата бурового
раствора, повышающего сопротивление
пласта,
4
—
в пласте высокого удельного сопротивления
ограниченной мощности (тонкий
пласт) при наблюдениях с градиент-зондами,
5 — крест кривой
28. Метод микрозондов, как средство выделение фильтрующих коллекторов.
Микрозонды – электродные установки малого размера, с малым радиусом исследования. Они позволяют детально исследовать изменение удельного сопротивление горных пород, непосредственно прилегающих к стенке скважины, а также для опред ρ р-ра.
Различают: обычные (нефокусир) и фокусированные микрозонды
Нефокусир микрозонды бывают двух видов:
- градиент-микрозонд
- потенциал-микрозонд
Задачи, решаемые МЗ
опр-е литологии пород в разрезе скв-ны
выделение коллекторов
опр-е сопротивления промежуточных пород.
Кривые МЗ очень изрезаны (обусловлено малым размером зондов и тем, что электроды отделены от промыв жидкости)
1) Чистые глины на диаграмме МЗ будут иметь миним. сопротивление. Глинистые сланцы, алевролиты, аргиллиты больше 4,5 Ом*м (коллектор – почти аргиллит)
Расхождения м/у показаниями МГЗ и МПЗ называются положит. приращением, при этом сопротивление КС в МПЗ на 50-70% выше КС в МГЗ. Величина приращения тем больше, чем меньше пористость г.п. Низкое уд.сопротивление против фильтрующих г.п. обусловлено влиянием глинистой корки.
2) Плотные г.п. (известняки, ангидриты и др.) имеют очень высокое сопротивление, кривые сильно изрезаны – это объясняется недостаточно плотным прижатием башмака к стенке скважины.
Недостатки обычных МЗ: сильное влияние глин корки и ограничение ρпп при высоких ρпп/ρгк (больше 20).
При бурении на технической воде глин корка может отсутствовать. Это необх учитывать при опред кол-ов.
Фокусир микрозонды (МБК)
2-х, 3-х, 4-х электродные
Зонды МБК позволяют более точно определить ρпп
Кривые МБК сильно изрезаны
По данным микрозондов хорошо выд-ся породы-коллекторы, им-ие на своей поверхности глинистую корку. Однако глин. корка одновр-но с этим отрицательно сказывается на результатах количеств. определений удельного сопротивление полностью промытой части коллектора. Для определение этой трудности применяют фокусированный микрозонд или, как его называют, зонд бокового микрокаротажа. При исследовании пород-коллекторов на показание микрозондов оказывает влияние удельное сопротивление части пласта, измененной проникновением фильтрата бурового раствора, а также удельное сопротивление и толщина глинистой корки. Поэтому по данным микрозондов трудно получить представление о характере насыщения коллектора ( нефтью, газом, водой)