
- •Основные положения, задачи курса.
- •2. Вклад и развитие науки о сопротивлении материалов и теории упругости выдающихся учёных.
- •3. Гипотезы и упрощающие допущения.
- •4. Простейшие типы и элементы конструкций.
- •5. Нагрузки действующие на сооружения и их элементы.
- •6. Деформации и перемещения.
- •7. Метод сечений.
- •8. Напряжения. Виды. Физ. Свойства.
- •9. Напряженное состояние в данной точке. Виды напряженных состояний.
- •10. Определение внутренних усилий при растяжении сжатии.
- •11. Определение напряжений при растяжении и сжатии.
- •12.Определение деформаций и перемещений при растяжении и сжатии.
- •13. Закон гука при растяжении и сжатии.
- •14. Опытное изучение свойств материалов.
- •15. Диаграммы растяжения и сжатия.
- •16. Свойства пластичности. Хрупкости. Наклеп.
- •17.Влияние времени и температуры на деформацию.
- •18.Особенности испытаний различных образцов на сжатие.
- •19. Механические свойства пластмасс.
- •20. Прочностные аспекты неоднородных материалов
- •21.Коэффецент запаса прочности.
- •22. Основные типы задач при расчете на прочность растянутых (сжатых) стержней.
- •23. Напряжения по наклонным сечениям
- •29.Закон сохранения механической энергии.
- •30.Статически неопределимые задачи при растяжении и сжатии.
- •31.Температурные и монтажные напряжения.
- •32.Концетрация напряжений.
- •33.Напряженное состояние и деформации при чистом сдвиге.
- •34. Потенциальная энергия деформации при чистом сдвиге.
- •35.Геометрические хар-ки сечений.
- •36. Кручение.Построение эпюр крутящих моментов.
- •37.Определание напряжений в стержнях круглого сечения. Закон Гука при кручении.
- •38.Прочностные расчеты при кручении.
- •39.Эпюры угловых моментов перемещений при кручении.
- •40.Потенциальная энергия при кручении.
- •41.Кручение стержней не круглого сечения.
- •42.Статистически неопределимые задачи при кручении.
- •43.Концетрация напряжений при кручении.
- •44.Рациональные формы сечений при кручении.
- •45.Общие понятия деформации изгиба. Определение опорных реакций.
- •46.Определение внутренних усилий при изгибе.
- •47.Зависимость между изгибающим моментом, поперечной силой и интенсивностью.
- •48.Построение эпюр изгибающих моментов и поперечных сил.
- •49.Нормальные напряжения при изгибе. Силовая и нейтральная ось.
- •50.Условия прочности по нормальным напряжениям при изгибе.
- •51.Касательные напряжения при изгибе.
- •52.Напряжения в наклонных сечениях балки. Главные напряжения.
- •53.Концетрация напряжений при изгибе.
- •54.Энергия деформации при изгибе.
- •55.Уравнение изогнутой оси балки.
- •56. Определение деформации при плоском изгибе
- •57. Определение перемещений при нескольких участках нагружения и переменной жесткости балок. Универсальные уравнения.
- •58.Теорема о взаимности работ. Теорема о взаимности перемещений.
- •59. Определение перемещений методом Мора
- •60. Расчет статически неопределимых балок.
- •63. Гипотеза наибольших нормальных напряжений (I теория прочности)
- •64. Сложное сопротивление
- •65. Изгиб в двух плоскостях(косой изгиб)
- •66. Изгиб с растяжением (сжатием).
- •70. Расчёт тонкостенных сосудов. Формула Лапласа.
- •67. Внецентренное растяжение - сжатие
- •68. Кручение с изгибом
- •69. Растяжение (сжатие) с кручением
- •70. Расчёт тонкостенных сосудов. Формула Лапласа.
- •73. Ударная вязкость. Физический смысл. Экспериментальный метод определения.
- •74. Усталостная прочность. Физический смысл. Экспериментальный метод определения.
74. Усталостная прочность. Физический смысл. Экспериментальный метод определения.
Уста́лостная про́чность (уста́лостная долгове́чность) — свойство материала не разрушаться с течением времени под действием изменяющихся рабочих нагрузок.
В большинстве случаев это циклические нагрузки. Разрушение происходит из-за появления микроразрушений, их накопления, затем объединения в одно макроразрушение. Накопление микроповреждений образно называют «усталостью», а усталостная прочность тогда есть способность материала не «уставать» и держать нагрузку. Для каждого материала существует так называемый предел усталостной прочности, который значительно меньше его предела прочности. Предел усталостной прочности предполагает возможность выдерживать нагрузки бесконечное число циклов, что в жизни конечно же недостижимо, однако усталостная кривая для максимально допустимых напряжений, после прохождения предела усталостной прочности значительно выпрямляется. На усталостную прочность влияют не только число циклов и величина действующей нагрузки, но и амплитуда напряжений в материале, возникающая в результате действующей переменной во времени нагрузки. Таким образом, в некоторых случаях, для определения усталостной прочности необходимо брать амплитуду изменения напряжения, а не максимально зафиксированное напряжение по модулю.