
- •Проблема зашиты информации. Ее актуальность. Основные понятия информационной безопасности.
- •Методы создания безопасных систем обработки информации.
- •Аутентификация субъекта
- •Угрозы информации. Понятия и определения. Различные типы классификаций угроз безопасности данных.
- •Контроль параметров состояния системы защиты
- •Принципы организации систем защиты данных.
- •Системы шифрования с открытым ключом.
- •Классификация из по размещению в системе.
- •Модель Харрисона - Руззо - Ульмана.
- •Защита программ и данных от нск. Юридические и программные средства защиты.
- •Проблема идентификации/аутентификации.
- •Алгоритм шифрования перестановкой
- •«Оранжевая книга»
- •Общие модели систем защиты информации
- •Защита от копирования.
- •Организационные меры защиты
- •Правовые меры защиты
- •Технические меры защиты
- •Шифрование. Методы аналитических преобразований Методы аналитических преобразований
- •Защита от отладчиков.
- •Предпосылки кризисной ситуации с обеспечением защиты информации. Задачи разработчиков современных информационных систем в контексте безопасности.
- •Классификация информации по ее доступности.
- •Классификация угроз безопасности, основанная на свойствах информации и систем ее обработки. Угрозы отказа в обслуживании.
- •Угрозы секретности. Каналы утечки информации.
- •Аутентификация объекта
- •Идентификация/аутентификация с помощью биометрических данных
- •Гаммирование
- •Требования к гамме
- •Алгоритмы сжатия
- •Формальные модели безопасности. Типы моделей безопасности, определения.
- •Формальное описание модели Обозначения
- •Определения состояния безопасности
- •Основная теорема безопасности Белла — Лападулы
- •Резервное копирование и восстановление данных.
- •Источники бесперебойного питания.
- •Схемы построения ибп
- •Резервная
- •Интерактивная
- •Двойное преобразование
- •Характеристики ибп
- •Составные части ибп
- •Шифрование заменой
- •Кодирование
- •Метод рассечения-разнесения
- •Типы антивирусов.
- •Рекурсивный (волновой) алгоритм сжатия
- •Слабые места вычислительных систем.
- •Классификация угроз безопасности, основанная на свойствах информации и систем ее обработки. Угрозы целостности.
- •Абсолютно стойкий шифр
- •Требования к системам зашиты данных
- •Причины возникновения изъянов защиты.
- •Типизированная матрица доступа.
- •Методы защиты данных. Классификация средств защиты. Физические и аппаратные средства защиты. Способы (методы) защиты информации:
- •Средства защиты информации:
- •Аутентификация.
- •Элементы системы аутентификации
- •Способы аутентификации Аутентификация по многоразовым паролям
- •Аутентификация по одноразовым паролям
- •Многофакторная аутентификация
- •Другие алгоритмы шифрования
- •Стандарты информационной безопасности.
- •Сжатие изображений Алгоритмы сжатия без потерь
- •Алгоритмы сжатия с потерями
- •Типы разрушающих программных средств.
- •Асимметричные алгоритмы шифрования
- •Подделка электронных подписей
- •Понятие «защищенная система» свойства защищенных систем.
- •Электронные платежные системы
- •Угрозы раскрытия параметров системы. Обоснование введения этого типа угроз.
- •Угрозы конфиденциальности
- •Угрозы доступности
- •Политика безопасности.
- •Безопасная функция перехода. Теорема Мак-Лина. Модель с уполномоченными субъектами.
- •Программные методы защиты данных.
- •Виртуальные частные сети
- •Алгоритм цифровой подписи Эль Гамаля (еgsа)
- •Стандарт информационной безопасности рф
- •Аппаратная защита программного обеспечения.
- •Экономические информационные системы
- •Классификация эис
- •Принципы эис
- •Функции эис
- •Алгоритмы архивации
- •Криптографические протоколы
- •Классификация
- •Электронная подпись
- •Назначение и применение эп
- •Виды электронных подписей в Российской Федерации
- •Защита корпоративных сетей
Рекурсивный (волновой) алгоритм сжатия
Английское название рекурсивного сжатия wavelet. На русский язык оно переводится как волновое сжатие, и как сжатие с использованием всплесков. Этот вид архивации известен довольно давно и напрямую исходит из идеи использования когерентности областей. Ориентирован алгоритм на цветные и черно-белые изображения с плавными переходами. Идеален для картинок типа рентгеновских снимков. Коэффициент сжатия задается и варьируется в пределах 5-100. При попытке задать больший коэффициент на резких границах, особенно проходящих по диагонали, проявляется лестничный эффект ступеньки разной яркости размером в несколько пикселов. Идея алгоритма заключается в том, что мы сохраняем в файл разницу число между средними значениями соседних блоков в изображении, которая обычно принимает значения, близкие к 0. Так два числа a2i и a2i+1 всегда можно представить в виде b1i=(a2i+a2i+1)/2 и b2i=(a2i-a2i+1)/2. Аналогично последовательность ai может быть попарно переведена в последовательность b1,2i.
Слабые места вычислительных систем.
1. Ввод данных
2. Прикладное и системное программное обеспечение.
3. Центральный процессор.
4. Выдача результатов.
5. Процесс передачи данных или процесс связи.
Классификация угроз безопасности, основанная на свойствах информации и систем ее обработки. Угрозы целостности.
Угроза ИБ – потенциально возможное событие, действие, процесс или явление, которое может привести к нанесению ущерба
Классифицировать угрозы информационной безопасности можно по нескольким критериям:
по базовым свойствам информации:
-доступность;
-целостность;
-конфиденциальность.
по компонентам ИС, на которые угрозы нацелены:
-данные;
-программа;
-аппаратура;
-поддерживающая инфраструктура.
Угроза нарушения целостности включает в себя любое умышленное изменение информации, хранящейся в вычислительной системе или передаваемой из одной системы в другую. Когда злоумышленники преднамеренно изменяют информацию, говорится, что целостность информации нарушена. Целостность также будет нарушена, если к несанкционированному изменению приводит случайная ошибка программного или аппаратного обеспечения. Санкционированными изменениями являются те, которые сделаны уполномоченными лицами с обоснованной целью (например, санкционированным изменением является периодическая запланированная коррекция некоторой базы данных).
Угрозы целостности
модификация (искажение) информации;
отрицание подлинности информации;
навязывание ложной информации, обман;
уничтожение информации.
Абсолютно стойкий шифр
Обсудим
особенности строения абсолютно стойкого
шифра и возможности его практического
использования. Типичным и наиболее
простым примером реализации абсолютно
стойкого шифра является шифр Вернама,
который осуществляет побитовое сложение
-битового
открытого текста и
-битового
ключа:
Здесь
-
открытый текст,
-
ключ,
-
шифрованный текст.
Подчеркнем, что для абсолютной стойкости существенным является каждое из следующих требований к ленте однократного использования:
1) полная случайность (равновероятность) ключа (это, в частности, означает, что ключ нельзя вырабатывать с помощью какого-либо детерминированного устройства);
2) равенство длины ключа и длины открытого текста;
3) однократность использования ключа.
В случае нарушения хотя бы одного из этих условий шифр перестает быть абсолютно стойким и появляются принципиальные возможности для его вскрытия (хотя они могут быть трудно реализуемыми).
В силу указанных причин абсолютно стойкие шифры применяются только в сетях связи с небольшим объемом передаваемой информации, обычно это сети для передачи особо важной государственной информации.