
Вопрос 58.
Обра́тные тригонометри́ческие фу́нкции — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
аркси́нус (обозначение: arcsin)
аркко́синус (обозначение: arccos)
аркта́нгенс (обозначение: arctg; в иностранной литературе arctan)
арккота́нгенс (обозначение: arcctg; в иностранной литературе arccotan)
арксе́канс (обозначение: arcsec)
арккосе́канс (обозначение: arccosec; в иностранной литературе arccsc)
Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arc — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Изредка в иностранной литературе пользуются обозначениями типа sin−1 для арксинуса и т.п.; это считается неоправданным, так как возможна путаница с возведением функции в степень −1
Производные обратных тригонометрических функций:
Вопрос 59.
Производная логарифмической функции для любого х из области определения находится по формуле
(1)
По основному логарифмическому тождеству х = еln х при всех положительных х, т. е. в этом равенстве справа и слева стоит одна и та же функция (определенная на R+). Поэтому производные х и еln x равны, т. е.
x' = (eln x)' (2)
Известно, что х' = 1. Производную правой части вычисляем по правилу нахождения производной сложной функции и теореме 1 : (еln x)'= еln х ln' x=x ln' x. Подставляя найденные производные в равенство (2), находим l = х ln' х, откуда .
Вопрос 60.
Производная степенно-показательной функции
Данную функцию мы еще не рассматривали. Степенно-показательная функция – это функция, у которой и степень и основание зависят от «икс». Классический пример, который вам приведут в любом учебнике или на любой лекции:
Как найти производную от степенно-показательной функции?
Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:
Как правило, в правой части из-под логарифма выносится степень:
В
результате в правой части у нас получилось
произведение двух функций, которое
будет дифференцироваться по стандартной
формуле
.
Находим производную, для этого заключаем обе части под штрихи:
Дальнейшие действия несложны:
Окончательно:
Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера №11.
В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.
Логарифмическое дифференцирование
Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций. Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:
Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.
Отсюда видно, что искомая производная равна