
- •1. Электростатика
- •1.1. Закон сохранения электрического заряда
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.8. Связь напряженности с потенциалом. Эквипотенциальные поверхности
- •1.9. Вычисление разности потенциалов по напряженности поля
- •1.10. Типы диэлектриков. Поляризация диэлектриков
- •1.11. Поляризованность. Напряженность поля в диэлектрике
- •1.12. Электрическое смещение.
- •1.13. Условия на границе двух диэлектриков
- •1.14. Силы, действующие на заряд в диэлектрике
- •1.15. Сегнетоэлектрики
- •1.16. Равновесие зарядов на проводнике
- •1.17. Проводники в электростатическом поле
- •1.18. Электрическая емкость уединенного проводника
- •1.19. Конденсаторы
- •1.20. Энергия системы зарядов уединенного проводника и конденсатора. Энергия электростатического поля
- •2. Постоянный электрический ток
- •2.1. Электрический ток. Сила и плотность тока
- •2.2. Сторонние силы. Электродвижущая сила и напряжение
- •2.3. Закон Ома. Сопротивление проводников
- •2.4. Работа и мощность тока. Закон Джоуля-Ленца
- •2.5. Закон Ома для неоднородного участка цени
- •2.6. Разветвленные цепи. Правила Кирxгофа
- •3. Магнитное поле
- •3.1. Магнитное поле и его характеристики
- •3.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •3.3. Закон Ампера. Взаимодействие параллельных токов
- •3.4. Магнитная постоянная. Единицы магнитной индукции напряженности магнитного поля
- •3.5. Магнитное поле движущегося заряда
- •3.6. Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •3.8. Ускорители заряженных частиц
- •3.9. Циркуляция вектора для магнитного поля в вакууме
- •3.10. Магнитное поле соленоида и тороида
- •3.11. Поток вектора магнитной индукции
- •3.12. Работа по перемещению проводника и контура с током в магнитном поле
- •3.13. Явление электромагнитной индукции
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •3.15. Вращение рамки и магнитном поле
- •3.16. Вихревые токи (токи Фуко)
- •3.17. Индуктивность контура. Самоиндукция
- •3.18. Токи при размыкании и замыкании цепи
- •3.19. Взаимная индукция
- •3.20. Трансформаторы
- •3.21. Энергия магнитного поля
- •4. Магнитные свойства вещества
- •4.1. Магнитные моменты электронов и атомов
- •4.3. Намагниченность. Магнитное поле в веществе
- •4.4. Ферромагнетики и их свойства
- •4.5.Природа ферромагнетизма
- •5. Основ ы теории максвелла для электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2.Ток смещения
- •5.3.Уравнение Максвелла для электромагнитного поля
3.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж.Био и Ф.Саваром. Результаты этих опытов были обобщены выдающимся французским математиком и физиком П.Лапласом.
Закон Био-Савара-Лапласа для проводника с током I, элемент которого d создает в некоторой точке А (рис. 34) индукцию поля dB, записывается в виде
,
(3.3)
Рис. 34 |
где
- вектор, по модулю равный d
элемента
проводника и совпадающий по направлению
с током,
|
Направление
перпендикулярно
и
,
т.е. перпендикулярно плоскости,
к которой они лежат, и совпадает с
касательной к линии магнитной индукции.
Это направление может быть найдено по
правилу нахождения линии магнитной
индукции (правилу правого винта):
направление вращения винта дает
направление
,
если поступательное движение винта
соответствует направлению
тока в элементе.
Модуль вектора dB определяется выражением
,
(3.4)
где α - угол между векторами и .
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимися зарядами в отдельности:
.
Расчет характеристик магнитного поля ( и ) но приведенным формулам в общем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био-Савара-Лапласа совместно с принципом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рассмотрим два примера:
1. Магнитное поле прямого тока - тока, текущего по гонкому прямому проводу бесконечной длины (рис. 35).
Рис. 35 |
В произвольной точке А, удаленной от оси проводника на расстояние R, векторы от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа Поэтому сложение векторов можно заменить сложением их модулей.
|
В качестве постоянной интегрирования выберем угол α, выразив через него все остальные величины. Из рис.35 следует, что радиус дуги CD вследствие малости равен r, и угол FDC по этой же причине можно считать прямым. Подставив эти выражения в (3.4), получим, что магнитная индукция, создаваемая одним элементом проводника, равна
.
(3.6)
Так как угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно формулам (3.5) и (3.6),
.
Следовательно, магнитная индукция поля прямого тока
.
(3.7)
2. Магнитное поле в центре кругового проводника с током.
Как видно из рис. 36, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления вдоль нормали от витка. Поэтому сложение векторов можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sinα=1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (3.4),
.
Рис. 36 |
Тогда
|