- •1. Роль химии в народном хозяйстве.
- •2. Основные законы химии
- •3. Строение атома, квантовые числа и их физический смысл.
- •4. Строение электронных оболочек атомов. Принцип Паули, правила Гунда, принцип наименьшей энергии.
- •5. Энергия ионизации атомов, сродство к электрону. Электроотрицательность.
- •6. Правила Клечковского, порядок заполнения атомных орбиталей.
- •7. Периодич. Закон Менделеева, как один из основных законов природы. Группы, периоды, подгруппы. Порядковый номер Эл-та.
- •8. Периодическая сист-ма Менд., св-ва атомов в звыисим от полож в системе.
- •9. Типы химических связей. Ковалентная, ионная, металлическая, химические связи между молекулами.
- •11. Гибридизация атомных орбиталей (ао). Возбужденное состояние атома.
- •12. Метод валентных связей. Механизмы образования ковалентной химической связи
- •13. Гибридизация атомных орбиталей. Пространственная конфигурация молекул
- •14. Химическая связь в комплексных соединениях (донорно-акцепторное взаимодействие).
- •16. Изменение энтальпии, энтропии, энергии Гиббса при химических процессах.
- •17. Обратимые и необратимые хим. Реакции. Химическое равновесие.
- •18. Константа химического равновесия. Принцип Ле-Шателье.
- •19. Понятие об активных молекулах, энергия активации.
- •20. Кинетика химических реакций. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры и наличия катализатора.
- •21.Общая хар-ка и классификация растворов. Способы выра-жения состава раствора.
- •22. Растворы неэлектролитов. Законы Рауля.
- •23. Осоматическое давление. Закон Вынт-Гоффа.
- •24. Криоскопия и эбуллиоскопия.
- •25. Растворы электролитов. Отклонения от законов Рауля и Вант-Гоффа для растворов электролитов.
- •26. Электролитическая диссоциация, ее причины, ход диссоциации от характера химических связей в молекуле.
- •27. Степень электролитической диссоциации. Сильные и слабые электролиты. Ступенчатая диссоциация и константа диссоциации.
- •28. Электролитическая диссоциация воды. Ионное произведение воды, водородный показатель рН.
- •29. Ионные реакции обмена.
- •30. Гидролиз солей. Константа и степень гидролиза.
- •31. Степень окисления и валентность элементов. Окислительные числа. Процессы окисления и восст-ния, окислитель и восстановитель.
- •32. Типы окислительно-восстановительных реакций (овр).
- •33. Граница раздела электрод-электролит. Двойной электрический слой и его строение.
- •34. Электродный потенциал, его понятие. Стандартный электродный потенциал.
- •35. Стандартный водородный электрод сравнения. Ряд стандартных потенциалов металлов
- •36. Электролиз. Последовательность разряда ионов на электродах. Электролиз с растворимым и нерастворимым анодом.
- •37. Законы Фрадея. Выход по току.Электрическое получение и рафинирование металлов.
- •38.Катодное выделение цинка, никеля из водных растворов. Перенапряжение водорода.
- •2 Закон Фарадея.
- •39. Первичные и вторичные источники электрической энергии. Хар-ки хим. Источников Эл. Энергии (хиээ.)
- •40. Гальванические элементыю Концентрационные элементы.
- •41. Аккумуляторы (а). Свинцовый аккумулятор
- •43. Коррозия металлов. Виды коррозии. Вопросы экономики, связанные с коррозией металлов.
- •44. Химическая и электрохимическая коррозия.
- •45. Методы защиты от коррозии: воздействие на среду, на металл и на изделие.
- •47. Электрохимическая размерная обработка.
- •48. Классификация органических соединений. Предельные углеводороды.
- •49. Непредельные углеводороды. Номенклатура и химические свойства.
- •50. Полимеры. Реакции полимеризации и поликонденсации.
11. Гибридизация атомных орбиталей (ао). Возбужденное состояние атома.
Если у атома в образовании химических связей участвуют разные по типу атомных орбиталей. АО (s-, p-, d- или f-АО), то химические связи формируются электронами не «чистых», а «смешанных», или гибридных орбиталей. Гибридизация - смешение АО с разными (но близкими) энергетическими состояниями, вследствие которого возникает такое же число одинаковых по форме и энергии орбиталей, симметрично расположенных в пространстве. Явление гибридизации основано на таком свойстве ковалентной связи, как направленность.
Перекрывание гибридных АО происходит в большей степени, чем негибридных орбиталей => химические связи прочнее => молекула более устойчива. (рис ниже)
Когда идёт распаривание электронных облаков атом переходит в возбуждённое состояние
Осн сост атома - энергетически стабильн состояние, когда атом не подвергается сильным внешним воздейств. В основ сост атом может находиться долго.
Возбужденное состояние атома - энергетически нестабильное состояние, в которое атом переходит, получая энергию извне. В возбужденном состоянии атом может пребывать лишь короткое время. Возбужденный атом, отдавая энергию, возвращается в основное состояние.
Процесс, приводящий к увеличению числа неспаренных электронов в атомах молекулы с целью увеличе-ния числа возможных ковалентных связей, называется возбуждением атома. Это возможно при затрате оп-ределённого количества энергии.
Sp –линейная, sp2- плоский треугольник, sp3-тетраэдр.
12. Метод валентных связей. Механизмы образования ковалентной химической связи
В 1927 году Гейтлер и Лондон провели исследование, которое позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путём образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Образование химической связи между атомами водорода является результатом взаимопроникновения электронных облаков, происходящего при сближении взаимодействующих атомов. Каждый электрон занимает место в квантовых ячейках обоих атомов, т.е. движется в силовом поле, образованном двумя силовыми центрами - ядрами атомов водорода. Такая двухэлектронная двухцентровая связь называется ковалентной связью.
Представление о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молеку-лы. Разработанная на этой основе теория химической связи получила название метода валентных связей. Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул.
В основе метода ВС лежат следующие положения:
1. Ковалентная химическая связь образуется двумя элек-тронами с противоположно направленными спинами, причём эта электронная пара принадлежит двум атомам.
Комбинации таких двуэлектронных двухцентровых свя-зей, отражающие электронную структуру молекулы, получи-ли название валентных схем.
2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.
Число электронных пар, связывающих атом данного эле-мента с другими атомами, или, иначе говоря, число образуе-мых атомом ковалентных связей, называется ковалентностью элемента в соответствующем соединении.
Электронная пара, осуществляющая ковалентную связь, может образоваться за счёт неспаренных электронов, имеющихся в невозбуждённых взаимодействующих атомах, и за счёт неспаренных элктронов, появляющихся в результате возбуждения атома. Во многих случаях ковалентные связи возникают и за счёт спаренных электронов, имеющихся во внешнем электронном слое атома. Тогда ковалентная связь устанавливается по донорно-акцепторному сбособу.
