- •1. Роль химии в народном хозяйстве.
- •2. Основные законы химии
- •3. Строение атома, квантовые числа и их физический смысл.
- •4. Строение электронных оболочек атомов. Принцип Паули, правила Гунда, принцип наименьшей энергии.
- •5. Энергия ионизации атомов, сродство к электрону. Электроотрицательность.
- •6. Правила Клечковского, порядок заполнения атомных орбиталей.
- •7. Периодич. Закон Менделеева, как один из основных законов природы. Группы, периоды, подгруппы. Порядковый номер Эл-та.
- •8. Периодическая сист-ма Менд., св-ва атомов в звыисим от полож в системе.
- •9. Типы химических связей. Ковалентная, ионная, металлическая, химические связи между молекулами.
- •11. Гибридизация атомных орбиталей (ао). Возбужденное состояние атома.
- •12. Метод валентных связей. Механизмы образования ковалентной химической связи
- •13. Гибридизация атомных орбиталей. Пространственная конфигурация молекул
- •14. Химическая связь в комплексных соединениях (донорно-акцепторное взаимодействие).
- •16. Изменение энтальпии, энтропии, энергии Гиббса при химических процессах.
- •17. Обратимые и необратимые хим. Реакции. Химическое равновесие.
- •18. Константа химического равновесия. Принцип Ле-Шателье.
- •19. Понятие об активных молекулах, энергия активации.
- •20. Кинетика химических реакций. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры и наличия катализатора.
- •21.Общая хар-ка и классификация растворов. Способы выра-жения состава раствора.
- •22. Растворы неэлектролитов. Законы Рауля.
- •23. Осоматическое давление. Закон Вынт-Гоффа.
- •24. Криоскопия и эбуллиоскопия.
- •25. Растворы электролитов. Отклонения от законов Рауля и Вант-Гоффа для растворов электролитов.
- •26. Электролитическая диссоциация, ее причины, ход диссоциации от характера химических связей в молекуле.
- •27. Степень электролитической диссоциации. Сильные и слабые электролиты. Ступенчатая диссоциация и константа диссоциации.
- •28. Электролитическая диссоциация воды. Ионное произведение воды, водородный показатель рН.
- •29. Ионные реакции обмена.
- •30. Гидролиз солей. Константа и степень гидролиза.
- •31. Степень окисления и валентность элементов. Окислительные числа. Процессы окисления и восст-ния, окислитель и восстановитель.
- •32. Типы окислительно-восстановительных реакций (овр).
- •33. Граница раздела электрод-электролит. Двойной электрический слой и его строение.
- •34. Электродный потенциал, его понятие. Стандартный электродный потенциал.
- •35. Стандартный водородный электрод сравнения. Ряд стандартных потенциалов металлов
- •36. Электролиз. Последовательность разряда ионов на электродах. Электролиз с растворимым и нерастворимым анодом.
- •37. Законы Фрадея. Выход по току.Электрическое получение и рафинирование металлов.
- •38.Катодное выделение цинка, никеля из водных растворов. Перенапряжение водорода.
- •2 Закон Фарадея.
- •39. Первичные и вторичные источники электрической энергии. Хар-ки хим. Источников Эл. Энергии (хиээ.)
- •40. Гальванические элементыю Концентрационные элементы.
- •41. Аккумуляторы (а). Свинцовый аккумулятор
- •43. Коррозия металлов. Виды коррозии. Вопросы экономики, связанные с коррозией металлов.
- •44. Химическая и электрохимическая коррозия.
- •45. Методы защиты от коррозии: воздействие на среду, на металл и на изделие.
- •47. Электрохимическая размерная обработка.
- •48. Классификация органических соединений. Предельные углеводороды.
- •49. Непредельные углеводороды. Номенклатура и химические свойства.
- •50. Полимеры. Реакции полимеризации и поликонденсации.
29. Ионные реакции обмена.
Реакция ионного обмена - это реакция между ионами, образовавшимися в результате диссоциации электролитов. Они протекают до конца в следующих случаях:
1. если образуется осадок;
2. если выделяется газ;
3. если образуется малодиссоциирующее вещество - вода.
Если в растворах нет таких ионов, которые могут связываться между собой с образованием осадка, газа или воды, то такая реакция называются обратимой.
Равновесие в растворах электролитов, также как и всякое химическое равновесие, сохраняется неизменным, пока определяющие его условия не меняются; изменение условий влечёт за собой нарушение равновесия.
Так, равновесие нарушается при изменении концентрации одного из участвующих в этом равновесии ионов: при её увеличении происходит процесс, в ходе которого эти ионы связываются.
1. Введение в раствор слабого электролита одноимённых ионов уменьшает степень диссоциации этого элемента;
2. растворимость электролитоа уменьшается от введения в раствор одноимённых ионов.
1 и 2 влекут за собой изменение концентрации ионов.
Основания -
этоэлектролиты, диссоциирующие в
растворах с отщеплением гидроксид-ионов.
Чем больше константа диссоциации данного
основания, тем оно сильнее. Существуют
гидроксиды, способные вступать во
взаимодействие и образовывать соли не
только с кислотами, но и с основаниями.
К таким гидроксидам принадлежит гидроксид
цинка. При взаимодействии его, например,
с соляной кислотой образуется хлорид
цинка, а при взаимодействии с гидроксидом
натрия - цинкат натрия. Гидроксиды,
обладающие этим свойством, называются
амфотерными гидроксидами или амфотерными
электролитами. Явление амфотерности
объясняется тем, что в молекулах
амфотерных электролитов прочность
связи между металлом и кислородом
незначительно отличается от прочности
связи между кислородом и водородом.
Диссоциация таких молекул возможна,
следовательно, по местам обеих этих
связей.Если обозначить амфотерный
электролит через ROH, то его диссоциацию
можно выразить схемой:
.
Таким образом, в растворе амфотерного
электролита существует сложное
равновесие, в котором участвуют продукты
диссоциации как по типу кислоты, так и
по типу основания.
При составлении ионных уравнений реакций следует учитывать:
1. простые вещества, оксиды, нерастворимые кислоты, основания и соли не диссоциируют;
2. для реакции берут растворы веществ, поэтому даже малорастворимые вещества находятся в растворах в виде ионов;
3. если малорастворимое вещество образуется в результате реакции, то при записи ионного уравнения его считают нерастворимым;
4. сумма электрических зарядов ионов в левой части уравнения должна быть равна сумме электрических зарядов ионов в правой части.
Обычно сначала записывают молекулярное уравнение реакции, затем с помощью таблицы растворимости определяют растворимость каждого вещества, составляют полное ионное уравнение и наконец, краткое ионое уравнение путём исключения ионов из левой и правой частей уравнения, которые в ходе реакции не претерпели изменений.
