Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia_2.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
494.4 Кб
Скачать

1)Биология - совокупность наук о жизни, о живой природе (греч. bios - жизнь, logos - учение).

Биология – наука, изучающая свойства живых систем.

Общая задача биологии -познать сущность жизни, ответить на вопрос - что есть жизнь.

Метод – это путь исследования, который проходит ученый, решая какую-либо научную задачу, проблему.

К основным методам науки относятся следующие:

Моделирование – метод, при котором создается некий образ объекта, модель, с помощью которой ученые получают необходимые сведения об объекте

Наблюдение – метод, с помощью которого исследователь собирает информацию об объекте. Наблюдать можно визуально, например за поведением животных. Можно наблюдать с помощью приборов за изменениями, происходящими в живых объектах: например, при снятии кардиограммы в течение суток, при замерах веса теленка в течение месяца

Эксперимент (опыт) – метод, с помощью которого проверяют результаты наблюдений. Эксперимент – это всегда получение новых знаний с помощью поставленного опыта.

Генеалогический метод – применяется при составлении родословных людей, выявлении характера наследования некоторых признаков.

Исторический метод – установление взаимосвязей между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени (несколько миллиардов лет

Палеонтологический метод – метод, позволяющий выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях.

Центрифугирование – разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций (составляющих) органических веществ и т. д.

Цитологический, или цитогенетический, – исследование строения клетки, ее структур с помощью различных микроскопов.

Биохимический – исследование химических процессов, происходящих в организме.

2)Сущность жизни, уровни организации живого. Фундаментальные свойства живого, клетка - элементарная биологическая единица

Сущность стремление к самовоспроизведению

Уровни организации живогоНа всех уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

1. Молекулярный уровень. Элементарная еденица-ген. Явление-самовоспроизведение.

2.Клеточный уровень. Элементарная еденица-клетка. Размножается на клеточном уровне.

. 3. Тканевый уровень. Элементарная еденица-ткань.специфическая функция ткани.

4. Органный уровень. Орган. Определенные функции.

5. Организменный уровень организации присущ одноклеточным и многоклеточным .У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой 6. Популяционный(популяция) характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе.7. Видовой(еденица систематики).

8. Биогеоценотический (экосистемный) уровень организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств

9. Биосферный уровень. Самый высокий уровень организации жизни. Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т. е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия, жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.

Свойства живогоДля живого характерен ряд свойств, которые в совокупности «делают» живое живым. Такими свойствами являются самовоспроизведение, специфичность организации, упорядоченность структуры, целостность и дискретность, рост и развитие, обмен веществ и энергии, наследственность и изменчивость, раздражимость, движение, внутренняя регуляция, специфичность взаимоотношений со средой.

1.Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).


2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза.


4. Обмен веществ и энергии. Живые организмы—открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой.

5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.


6.Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.
7. Изменчивость. Припередаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.


8. Рост и развитие. Рост-увеличение числа, размеров и массы клеток. Развитие-приобретение специфических св-в и функций.

9. Раздражимость и движение. Не имеющие нервной системы: а)Одноклеточные-таксис. Б) Растения и многоклеточные-тропизм. В) движение отдельных органов-настия. Имеющие нервную систему-рефлекс и реч.

10.Репродукция: живое происходит от живого.

Клетка – элементарная биологическая единица Клетка составляет основу строения, жизнедеятельности и развития всех живых форм — одноклеточных, многоклеточных и даже неклеточных. Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчивости, обусловливая тем самым присущие органическому миру качества единства и разнообразия.

Занимая в мире живых существ положение элементарной единицы, клетка отличается сложным строением. При этом определенные черты обнаруживаются во всех без исключения клетках, характеризуя наиболее важные стороны клеточной организации как таковой.

3) Клеточная теория: основные этапы развития

Кл теория сформулирована немецким исследователем, зоологом Т. Шванном (1839). Поскольку при создании этой теории Шванн широко пользовался работами ботаника М Шлейдена, последнего по праву считают соавтором кл теории. Исходя из предположения о схожести (гомологичности) растительных и животных клеток, доказываемой одинаковым механизмом их возникновения, Шванн обобщил многочисленные данные в виде теории, согласно которой клетки являются структурной и функциональной основой живых существ.

В конце 19 века немецкий патолог Р. Вирхов на основе новых фактов пересмотрел клеточную теорию. Ему принадлежит вывод о том, что клетка может возникнуть лишь из предшествующей клетки. Им создана вызвавшая критику концепция «клеточного государства», согласно которой клеточный организм состоит из относительно самостоятельных единиц (клеток), поставленных в своей жизнедеятельности в тесную взаимосвязь друг от друга.

Клеточная теория в современном виде включает четыре главных положения:

  • Клетка – основная структурно-функциональная и генетическая единица живых организмов, наименьшая единица живого

  • Клетки одноклеточных и многоклеточных организмов сходны по строению, химическому составу и важнейшим проявлениям процессов жизнедеятельности

  • Каждая новая клетка образуется в результате деления исходной (материнской) клетки

  • Клетки многоклеточных организмов специализированны: они выполняют разные функции и образуют ткани

4) ТИПЫ КЛЕТОЧНОЙ ОРГАНИЗАЦИИ

Клеткам прокариотического типа свойственны малые размеры (не более 0,5—3,0 мкм в диаметре или по длине), отсутствие обособленного ядра, так что генетический материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат представлен ДНК единствен­ной кольцевой хромосомы, которая лишена основных белков — гистонов (гистоны являются белками клеточных ядер). Благодаря значительному количеству диаминокислот аргинина и лизина гистоны имеют щелочной характер.

Различия прокариотических и эукариотических клеток по наличию гистонов указывают на разные механизмы регуляции функции гене­тического материала. В прокариотических клетках отсутствует клеточный центр. Не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток из материнской (время генерации), сравнительно мало и исчисляется десятками минут. К прокариотическому типу клеток относятся бактерии и синезеленые водоросли.

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ

ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ

Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в струк­турном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образова­ний, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организ­ма. Таковы (например, у инфузо­рий) цитостом, цитофарингс и порошица, аналогичные пищева­рительной системе, и сократитель­ные вакуоли, аналогичные выделительной системе.

В традиционном изложении клетку растительного или живо­тного организма описывают как объект, отграниченный оболочкой, и котором выделяют ядро и цитоп­лазму. В ядре наряду с оболочкой- 11 ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма подставлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.

5) Вирусы были обнаружены в 1892году русским учёным Д.И.Ивановским. В 1917году француз Ф.Д’Эрель открыл бактериофаг-вирус,поражающий бактерии.

Особенности вирусов заключаются в их незначительных размерах,отсутствии клеточного строения,обмена веществ и энергии.Но самым характерным критерием является наличие у вирусов только одной нуклеиновой кислоты – РНК или ДНК(у остальных организмов всегда имеются и ДНК, и РНК).Вирусы самостоятельно не способны синтезировать белки.Вирусы не растут. Простая вирусная частица состоит из образованной белками оболочки - капсида и нуклеиновой кислоты. Некоторые более сложные вирусы(герпеса,гриппа) помимо белков капсида и нуклеиновой кислоты могут содержать липопротеиновую мембрану,углеводы и ряд ферментов. Различают два вида вирусов РНК-содержащие и ДНК-содержащие, но независимо от того,какая из нуклеиновых кислот содержится в вирусе,она выполняет функции носителя наследственной информации. Объём генетической информации вируса может быть очень мал,например у самых малых вирусов он состоит из 3500нуклеотидов.

Бактериофаг состоит из головки(белковая оболочка и заключённая в ней ДНК или РНК)и отростка.

Биологическое значение вирусов в первую очередь связывается с их патогенным действием, т.е. способностью вызывать различные заболевания у человека, животных и растений. Сегодня специалисты насчитывают не менее 500 различных болезней человека, в которых в той или иной мере повинен вирус. Среди них такое заболевание как бешенство, оспа, желтая лихорадка, энцефалиты, гепатиты, злокачественные опухоли, СПИД, корь и др.Помимо того, вирусы способны оказывать влияние на генетический аппарат клетки, вызывая генные мутации.

6)Клетка как открытая система: Потоки вещества, энергии и информации в клетке.

Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ.

Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.

Поток энергии обеспечивается механизмами энергообеспечения — брожением, фото — или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз— процесс бескилородного расщепления глюкозы. Фотосинтез— механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.

Биологически активные вещества — гормоны, ферменты, адреналин, серотонин и т. д.

7) Элементарный химический состав живого. Вода и низкомолекулярные соединения.

Клеточное вещество является сложным полифазным коллоидом, т. е. представляет собой систему из 2х несмешивающихся фаз.

В элементарном составе клетки насчитывается более 80 элементов. Их делят на 3 группы:

  • Макроэлементы – содержание которых в клетках составляет до 10-3 % (кислород, углерод, водород, азот, фосфор, сера, кальций, натрий и магний); на их долю приходится свыше 99% массы клеток.

  • Микроэлементы – содержание которых колеблется от 10-3% до 10-6% (железо, марганец, медь, цинк, кобальт, никель, иод, фтор); на их долю приходится менее 1 % массы клеток.

  • Ультрамикроэлементы – содержание которых составляет менее 10-6% (золото, серебро, уран, цезий, бром, ванадий, селен); на их долю приходится менее 0,01% массы клетки.

Неорганическими соединениями клетки являются вода и минеральные соли.

Вода составляет около 70% массы клетки. У отдельных организмов (медуз) её содержание составляет 95%. В теле человека вода составляет 60%, из которой 40 % приходится на внутриклеточную воду.

Функции воды:

  1. связанная вода (4-5%) образует водные (сольватные) оболочки вокруг молекул белков, препятствуя склеиванию их друг с другом;

  2. свободная вода является универсальным растворителем и способствует трунспорту растворенных в ней веществ;

  3. вода принимает непосредственное участие в реакциях гидролиза;

  4. вода регулирует тепловой режим и осмотическое давление в клетках.

Минеральные соли и хим элементы в определенных концентрациях необходимы для нормальной жизнедеятельности клеток.

8) . Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров

белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль всигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Транспортная функция белков: Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией

Рецепторная функция: Большое значение, в особенности для функционирования многоклеточных организмов, имеют белки-рецепторы, вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток.

Защитная функция: Иммунная система обладает способностью отвечать на появление чужеродных частиц выработкой огромного числа лимфоцитов, способных специфически повреждать именно эти частицы, которыми могут быть чужеродные клетки, например патогенные бактерии, раковые клетки, надмолекулярные частицы, такие как вирусы, макромолекулы, включая чужеродные белки

Структурная функция: Наряду с белками, выполняющими тонкие высокоспециализированные функции, существуют белки, имеющие в основном структурное значение. Они обеспечивают механическую прочность и другие механические свойства отдельных тканей живых организмов

Двигательные белки Мышечное сокращение является процессом, в ходе которого происходит превращение химической энергии, запасенной в виде макроэргических пирофосфатных связей в молекулах АТФ, в механическую работу. Непосредственными участниками процесса сокращения являются два белка - актин и миозин.

9)Строение и биологические функции липидов клетки.

Под термином липиды (греч. lipos - жир) объединяют жиры и жироподобные вещества.

Липиды - органические соединения с различной структурой, но общими свойствами. Они нерастворимы в воде, но хорошо растворяются в органических растворителях: эфире, бензине, хлороформе и др. Липиды очень широко представлены в живой природе и играют чрезвычайно важную роль в клетке и организме. Они содержатся в любых клетках. Содержание жира в них обычно невелико и составляет 5 - 15% от сухой массы. Существуют, однако, клетки, содержание жира в которых достигает почти 90% от сухой массы. Эти буквально набитые жиром клетки имеются в жировой ткани.

Функции липидов:

1) Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.

2)Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.

3) Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.

4)Защитная

Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

5) Теплоизоляционная

Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.

6) Регуляторная

Гиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.

7)Источник метаболической воды

При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.

8) Каталитическая

Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

10)Углеводы. Общая формула Сn (H2O)n. Следовательно, углеводы содержат в своем составе только три химических элемента.

Растворимые в воде углеводы..

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих. Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полисахариды: крахмал, гликоген, целлюлоза, хитин. Они не растворимы в воде..

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями. Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Гликоген – запасное вещество животной клетки. Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

ФУНКЦИИ:

1)входит в состав жизненно-важных веществ

2)участвует в фиксации углерода

3)резервная

4)структурная

5)защитная

6)имеют энергетическую функцию 1г глюкозы=17кДж

11)Строение и биологические функции нуклеиновых кислот

Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной(генетической) информации в живых организмах.

В природе существует два вида нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК)..

ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме, матриксе пластид и митохондрий.

Нуклеиновые кислоты представляют собой биополимеры, мономерами которых являются нуклеотиды. В состав каждого нуклеотида входит азотистое основание, пятиуглеродный сахар (рибоза или дезоксирибоза) и остаток фосфорной кислоты. Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин. ДНК — представляет собой двухцепочечный биологический полимер, мономерами которого являются нуклеотиды, содержащие одно из азотистых оснований, дезоксирибозу и остаток фосфорной кислоты. Полинуклеотидные цепи молекулы ДНК антипараллельны и соединены друг с другом водородными связями по принципу комплиментарности. А=Т, Ц=Г

Функцияу ДНК одна - хранение генетической информации

РНК - также полимер, мономерами которой являются нуклеотиды. РНК представляет собой однонитевую молекулу. Она построена таким же образом, как и одна из цепей ДНК. А=У, Ц=Г.В отличие от ДНК, содержание которой в клетках конкретных организмов относительно постоянно, содержание РНК сильно в них колеблется. Оно заметно повышено в клетках, в которых происходит синтез белка.

Функции РНК По выполнению функций выделя-ют несколько видов РНК.


Транспортная РНК(т-РНК). Функция состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетки на долю т-РНК приходится около 10%.


Рибосомная РНК (р-РНК)..

Информационная РНК (и-РНК), или матричная (м-РНК). Содержится в ядре и цитоплазме. Функция ее состоит в переносе информации о структуре белка от ДНК к месту синтеза белка в рибосомах. Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.

12) Строение и биологические функции плазматической мембраны. Реснички и жгутики, микроворсинки.

Биологическая мембрана

Важная роль в осуществлении компаргментации принадлежит био­логическим мембранам. Они выполняют ряд функций: отграничиваю­щую (барьерную), регуляции и обеспечения избирательной проницаемости веществ, образования поверхностей раздела между водной (гидрофильной) и неводной (гидрофобной) фазами с размеще­нием на этих поверхностях ферментных комплексов. Благодаря при­сутствию липидов (жировых веществ) мембраны образуют гидрофобную внутриклеточную фазу как компартмент для химических реакций в неводной среде. Молекулярный состав мембран, набор соединений и ионов, размещающихся на их поверхностях, различаются от структуры к структуре. Этим достигается функциональная специа­лизация мембран клетки. Включение в мембрану клетки молекул рецепторов делает ее восприимчивой к биологически активным сое­динениям, например гормонам.

Предложено несколько схем взаимоотношения в мембране основ­ных химических компонентов — белков и липидов, а также веществ, размещаемых на мембранной поверхности. В настоящее время принята точка зрения, согласно которой мембрана составлена из бимолекуляр­ного слоя липидов. Гидрофобные участки их молекул повернуты друг к другу, а гидрофильные — находятся на поверхности слоя. Разнообраз­ные белковые молекулы встроены в этот слой или размещены на его поверхностях (рис. 2.4).

Благодаря компаргментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно взаимодействуют друг с другом.

13)

56.Строение, локализация и функции нуклеиновых кислот.

Нуклеиновые кислоты (НК) – простетическая группа нуклеопротеидов (НП). НК открыты еще в 70-х годах XIX столетия (Фишер), но строение, локализация и роль установлены только в середине XХ века. Известно 2 вида НК – ДНК и РНК, которые различаются составом молекулы, локализацией в клетке и функцией в организме.

ДНК – дезоксирибонуклеиновая кислота;

РНК – рибонуклеиновая кислота.

ДНК и РНК – высокомолекулярные соединения, мономеры их - нуклеотиды соединены 3, 5 - фосфодиэфирными связями. Их молекулярная масса сильно варьирует (от 15 тыс. до 1 млрд). Каждый из нуклеотидов содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза — в ДНК, рибоза — в РНК) и остаток фосфорной кислоты.

Различия между ДНК и РНК:

1. В составе ДНК – аденин, гуанин, цитозин, тимин; в составе РНК – аденин, гуанин, цитозин, урацил.

2. В составе ДНК – дезоксирибоза; в составе РНК – рибоза.

3. Молекулы ДНК двухцепочечные; РНК – одноцепочечные.

Особенности структуры ДНК

- ДНК состоит из двух правозакрученных полинуклеотидных спиралей, имеющих общую ось.

- Две цепи ДНК антипараллельны, т.е. 3 и 5 фосфодиэфирные мостики ориентированы в противоположных направлениях.

- Основания плоские, гидрофобные, расположены в параллельных плоскостях и перпендикулярно длинной оси спиралей.

- Основания 2-х цепей спарены. Напротив А-Т; напротив Г-Ц;

Спаренные основания являются комплементарными по отношению друг к другу.

Комплементарность – пространственная взаимодополняемость поверхностей взаимодействующих молекул или их частей, приводящая к возникновению между ними вторичных связей.

Между А и Т возникает 2 водородные связи; между Г и Ц – 3 водородные связи.

Остатки сахаров и фосфорные группы остаются на поверхности молекулы и контактируют с водой. Отрицательно заряженные группы остатков фосфорной кислоты легко вступают во взаимодействие с белками, среди которых преобладают гистоны – белки, отличающиеся своей основной природой.

Нуклеиновые кислоты отличаются друг от друга по функциям.

Функции ДНК – хранение, репликация (удвоение) и передача наследственной информации, т.е. информации о первичной структуре белков.

Молекула ДНК может включать огромное количество нуклеотидов — от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

Комплементарностью обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК — способность к самовоспроизведению или удвоению. При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.

Функции РНК определяются типом РНК. Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов.

  • Процессинг: Многие РНК принимают участие в модификации других РНК. Интроны вырезают из про-мРНК сплайсосомы, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК). Кроме того, интроны могут катализировать собственное вырезание. Синтезированная в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышке и тельцах Кахаля. После ассоциации мяРНК с ферментами, мяРНК связывается с РНК-мишенью путем образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК.

  • Трансляция: тРНК присоединяют определенные аминокислоты в цитоплазме и направляется к месту синтеза белка на иРНК где связывается с кодоном и отдает аминокислоту которая используется для синтеза белка.

  • Информационная функция: У некоторых вирусов РНК выполняет те  функции которые  ДНК выполняет у эукариот. Также информационную функцию выполняет иРНК которая переносит информацию о белках и является местом его синтеза.

  • Регуляция генов : Некоторые типы РНК участвуют в регуляции генов увеличивая или уменьшая его активность. Это так называемые миРНК (малые интерферирующие РНК) и микро-РНК.

  • Каталитическая функция:      Есть так называемые ферменты которые относятся к РНК они называются рибозимы. Эти ферменты выполняют различные функции и имеют своеобразное строение

Типы РНК:

а) м-РНК – матричная или и-РНК – информационная. Матричная РНК выполняет функцию переноса наследственной информации из ядра клетки от ДНК в цитоплазму, к месту синтеза белка. Существуют сотни тысяч видов м-РНК в клетке. Располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК.

б) т-РНК – транспортная. Содержится в ядре и цитоплазме клетки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции — биосинтеза белка.

в) р-РНК – рибосомальная. Содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Связываясь с определенными белками, рРНК организуют важнейший аппарат клетки — рибосомы, обеспечивающие синтез всех клеточных белков.

Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

Нуклеиновые кислоты отличаются по локализации.

Основное количество ДНК находится в ядре клетки (в составе хромосом). Часть ДНК располагается в митохондриях и хлоропластах (ее называют цитоплазматической ДНК).

РНК находится в цитоплазме.

Компоненты нуклеотидов ДНК и РНК

Нуклеиновая кислота

Пятиуглеродный сахар

Азотистые основания

Остаток фосфорной кислоты

ДНК

Дезоксирибоза

Аденин, гуанин, цитозин, тимин

Остаток фосфорной кислоты

РНК

Рибоза

Аденин, гуанин, цитозин, урацил

Остаток фосфорной кислоты

Три вида РНК

РНК

Число нуклеотидов в молекуле

Информационные

До 30 000

Рибосомальные

До 6000

Транспортные

Около 100

57.Типы рнк и их роль в синтезе белка клетки. Постранскрипционные процессы

Существуют три типа РНК, каждый из которых выполняет свою особую роль в синтезе белка. 

    Матричная рибонуклеиновая кислота (мРНК, синоним - информационная РНК, иРНК) - РНК, отвечающая за перенос информации о первичной структуре белков от ДНК к местам синтеза белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется при трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.

 Транспортные (тРНК) - малые, состоящие из примерно 80 нуклеотидов. Они переносят специфические аминокислоты к месту синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодону мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединенной к тРНК. 

 Рибосомальные РНК (рРНК) - каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырех типов рРНК синтезируются на  полисомах. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеины, называемые рибосомами. Рибосома присоединяется к мРНК и синтезирует белок.рРНК составляет до 80% РНК, обнаруживается в цитоплазме эукариотической клетки. 

Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Основные стадии процессинга:

  1. отщепление концевых участков первичного транскрипта (спейсеров);

  2. формирование на 5' конце колпачка, состоящего из особой последовательности нуклеотидов;

  3. формирование на 3' конце полиадениловой последовательности нуклеотидов АААА:

  4. метилирование некоторых внутренних азотистых оснований в транскрипте, стабилизирующее молекулу РНК;

  5. вырезание неинформативных участков, соответствующих нитронам ДНК, и сшивание (сплайсинг) участков, соответствующих экзонам. Вырезание интронов происходит с участием сплайсмосом. Некодирующие последовательности - интроны превращаются в малую ядерную РНК (мяРНК). Выделено до 30 мяРНК, они участвуют в сплайсинге и ядерно- цитоплазматическом транспорте белков.

В результате процессинга у эукариот зрелая нРНК характеризуется следующими особенностями строения: Кэп - особая последовательность нуклеотидов с метилированными основаниями, которая обеспечивает узнавание малых субъединиц рибосом; Лидер - вводная последовательность нуклеотидов, комплементарная последовательности в молекуле рРНК малой субъединицы рибосом, которая обеспечивает прикрепление иРНК к малой субъединице. Стартовый кодон - триплет нуклеотидов, кодирующий в большинстве случаев аминокислоту формилметионин (АУГ). Кодирующая часть - последовательность колонов, шифрующих определенную последовательность аминокислот в соответствующей пептидной цепи. Поли А-хвост - концевая часть молекулы иРНК, включающая нонсенс-кодон и поли-А последовательность.

Биосинтез: Матричная РНК, кодирующая белки, о которой и шла речь выше, - это лишь один из трех главных классов клеточных РНК. Основную их массу (около 80%) составляет другой класс РНК - рибосомные РНК, которые образуют структурный каркас и функциональные центры универсальных белок-синтезирующих частиц - рибосом. Именно рибосомные РНК ответственны - как в структурном, так и в функциональном отношении - за формирование ультрамикроскопических молекулярных машин, называемых рибосомами. Рибосомы воспринимают генетическую информацию в виде молекул мРНК и, будучи запрограммированы последними, делают белки в точном соответствии с данной программой.  

Рис. 1. Общая схема биосинтеза белков

Однако, чтобы синтезировать белки, одной только информации или программы недостаточно - нужен еще и материал, из которого их можно делать. Поток материала для синтеза белков идет в рибосомы через посредство третьего класса клеточных РНК - РНК-переносчиков (транспортные РНК, тРНК). Они ковалентно связывают - акцептируют - аминокислоты, которые служат строительным материалом для белков, и в виде аминоацил-тРНК поступают в рибосомы. В рибосомах аминоацил-тРНК взаимодействуют с кодонами - трехнуклеотидными комбинациями - мРНК, в результате чего и происходит декодирование кодонов в процессе трансляции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]