
- •Глава 1. Введение. Свойства жидкостей
- •Глава 2. Гидростатика
- •Глава 3. Динамика и кинематика жидкости
- •Раздел 5. Теория ламинарного режима движения жидкости
- •Раздел 6. Теория турбулентного режима движения
- •Раздел 7. Истечние жидкости через отверстия и насадки
- •Раздел 8. Гидравлический расчет трубопроводов
- •Раздел 9. Гидравлический удар в трубах ………………………
- •Раздел 10. Гидродинамическое подобие ……………………….
- •Общие организационно – методические указания
- •Глава 1
- •§1.1. Предмет гидромеханики
- •§1.2. Основные физические характеристики и
- •Глава 2
- •§2.1. Силы, действующие в жидкости. Понятие
- •§2.2. Гидростатическое давление и его
- •§2.3. Дифференциальные уравнения равновесия
- •§2.4. Основное уравнение гидростатики
- •§2.5. Полное и манометрическое давление.
- •§2.6. Сила гидростатического давления на
- •§2.7. Эпюры гидростатического давления
- •§2.8. Гидростатический парадокс
- •§2.9. Поверхность уровня и ее свойства
- •§2.10. Относительное равновесие жидкости
- •§2.11. Сила давления жидкости на криволинейные
- •§2.12. Закон архимеда
- •§2.13. Плавучесть тела. Остойчивость плаваюшего
- •Глава 3
- •§3.1. Основные характеристики движения
- •§ 3.2. Уравнение постоянства расхода
- •§ 3.3. Дифференциальные уравнения движения
- •§ 3.4 Уравнение бернулли для элементарной струйки идеальной жидкости
- •§ 3.5 Уравнение бернулли для потока реальной
- •§ 3.6 Диаграммы бернулли
- •§ 3.7 Принципы измерения скорости и расхода
- •Глава 4
- •§ 4.1. Общие сведения о режимах движения
- •§ 4.2. Основное уравнение равномерного движения
- •Глава 5
- •§ 5.1. Профиль скорости в живом сечении круглого трубопровода
- •§ 5.2. Расход жидкости
- •§ 5.3. Потери напора по длине круглого
- •Глава 6
- •§ 6.1. Характеристика турбулентного потока
- •§ 6.2. Потери напора по длине трубопровода при
- •§ 6.3. Местные потери напора при турбулентном
- •Глава 7
- •§ 7.1. Классификация отверстий и насадков.
- •§ 7.2 Истечение при постоянном напоре.
- •§ 7.3. Истечение при постоянном напоре
- •§ 7.4 Истечение жидкости при переменном напоре
- •Глава 8
- •§ 8.1. Системы трубопроводов и основные типы
- •§ 8.2. Основные расчетные зависимости
- •§ 8.3 Расчет длинных трубопроводов
- •§ 8.3.1 Расчет простого длинного трубопровода
- •§ 8.3.2 Расчет сложного длинного трубопровода
- •§ 8.4 Расчет коротких трубопроводов
- •Глава 9
- •Глава 10
- •Вопросы для самопроверки
- •Литература
- •6.070104 «Морской и речной транспорт»
§2.10. Относительное равновесие жидкости
ВО ВРАЩАЮЩЕМСЯ СОСУДЕ
Относительным равновесием жидкости называется такой случай ее движения, при котором отдельные ее частицы не смещаются одна относительно другой, и вся масса жидкости движется как твердое тело.
П
редположим,
что цилиндр, наполненный жидкостью до
высоты h,
приведен во вращательное движение
вокруг вертикальной оси OZ
с угловой скоростью ω
(рис.2.11).
Рис 2.11
Вращающиеся стенки цилиндра приведут во вращение ближайшие к стенкам слои жидкости, а затем, вследствие вязкости жидкости, и всю ее массу. По истечении некоторого времени вся жидкость будет вращаться, примерно стой же угловой скоростью ω, что и сосуд.
Допустим, что такой момент времени наступил. Рассмотрим два интересующих нас вопроса.
1. Какую форму будет иметь поверхность равного давления, и в частности, свободная поверхность?
2. Каков закон распределения гидростатического давления?
Чтобы ответить на поставленные вопросы, рассмотрим уравнение поверхности равного давления (2.31). Для нахождения проекций ускорения выберем в жидкости точку А и покажем ускорения возникающие под действием сил, действующих в жидкости. Силами, действующими в жидкости, являются сила земного тяготения (направленная вертикально вниз по оси OZ) и центробежная сила (направленная вдоль оси ОХ к периферии). В результате действия этих сил полное ускорение точки А будет складываться из ускорения свободного падения g и центробежного ускорения ε.
Составляющие массовых сил, действующих в данном случае на жидкость, X, Y, и Z будут равны:
;
;
, (2.34)
где εх, εy – проекции центробежного ускорения по осям х и y.
Подставляя выражения (2.34) в уравнение (2.31) получаем
. (2.35)
После решения уравнения (2.35) относительно dz и его интегрирования получаем
. (2.36)
Постоянную интегрирования С находим из следующих условий: Х = 0, Y= 0, Z = h*. Следовательно С= h* , т.е. постоянная интегрирования равна глубине залегания самой нижней точки свободной поверхности (вершины параболы).
С учетом постоянной интегрирования С, и при условии, что величина h* определяется из условия неизменности первоначального объема жидкости, т.е.
, (2.37)
уравнение (2.36) принимает вид:
. (2.38)
Полученное уравнение (2.38) является уравнением свободной поверхности жидкости во вращающемся сосуде. Согласно полученному уравнению (2.38), формой свободной поверхности является параболоид вращения.
В уравнении (2.38), x2 + y2= r2, где r – координата рассматриваемой точка А. При условии, что r = R, т.е. рассматриваемая точка А находится на внутренней поверхности вращающегося сосуда, наблюдается максимальный подъем жидкости на высоту zmax. Для определения zmax в уравнение (2.38) подставляем выражение x2 + y2= r2 и получаем
. (2.39)
Согласно полученному уравнению (2.39) можно сделать вывод, что жидкость во вращающемся сосуде поднимается на столько, на сколько и опускается.
Теперь установим закон распределения гидростатического давления.
Подставляя выражения (2.34) в уравнение (2.13) получим
. (2.40)
Выполняя интегрирования уравнения (2.40) получим
. (2.41)
Постоянную интегрирования С находим из следующих условий: Х = 0, Y= 0, Z = h*, р=ратм.
С учетом вышеперечисленного, уравнение (2.41) принимает следующий вид:
(2.42)
или
. (2.43)
Уравнения (2.42) и (2.43) являются уравнениями закона распределения гидростатического давления.