
- •Классификация станков
- •Классификация станков
- •Классификация металлорежущих станков
- •Технико-экономические показатели и критерии работоспособности станков
- •Эффективность
- •Производительность
- •Надежность
- •Гибкость
- •Точность
- •Формообразование на станках
- •Методы образования производящих линий
- •Образование поверхностей
- •Классификация движений в станках
- •Кинематическая группа
- •Кинематическая структура станков
- •Кинематическая настройка станков
- •Станки для обработки тел вращения Токарные и токарно-винторезные станки
- •Токарно-револьверные станки
- •Токарно-карусельные станки
- •Станки для обработки призматических деталей
- •Расточные станки
- •Фрезерные станки
- •Делительные головки
- •Станки для абразивной обработки
- •Преимущества бесцентровошлифовальных станков:
- •4. Плоскошлифовальные станки
- •Электрохимическая обработка (эхо)
- •Зубообрабатывающие станки
- •Нарезание цилиндрических колёс с прямыми и косыми зубьями
- •Нарезание червячных колёс червячными фрезами
- •Анализ перемещений инструмента и заготовки при нарезании конических зубчатых колёс с прямыми зубьями
- •Обработка конических зубчатых колёс с прямыми зубьями двумя резцами, образующими впадину плоского производящего колеса
- •Обработка прямозубых конических колёс дисковыми фрезами (метод обкатки)
- •Анализ перемещений инструмента и заготовки при нарезании конических зубчатых колёс с круговыми зубьями
- •II часть Агрегатные станки
- •Многооперационные станки
- •Автоматические линии
- •Ал для обработки корпусных деталей
- •Ал для обработки деталей типа тел вращения
- •Роторные станки и ал
- •Манипуляторы
- •Станочные модули и гибкие системы
- •Компоновка станков Основные определения. Задачи компоновочного проектирования станков
- •Функции автоматического измерения, контроля процессов и диагностики в станках с чпу
- •Системы адаптивного управления
- •Испытания и ремонт станков
- •Ремонт и обслуживание станков
- •Литература
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ»
(КНИТУ – КАИ)
Альметьевский филиал
Кафедра конструирования и машиностроительных технологий
ЛЕКЦИИ ПО КУРСУ «МЕТАЛЛОРЕЖУЩИЕ СТАНКИ»
Альметьевск, 2012
Металлорежущие станки
Введение
Машиностроение является основой научно-технического прогресса в различных отраслях народного хозяйства. Непрерывное совершенствование и развитие машиностроения связано с прогрессом станкостроения, поскольку металлорежущие станки вместе с некоторыми другими видами технологических машин обеспечивают изготовление любых новых видов оборудования.
Правительство всегда придавали большое значение развитию станкостроения, основы которого были заложены в годы первых пятилеток. Крупнейшие теоретические разработки в области станкостроения были осуществлены в ЭНИМСе (экспериментальном научно-исследовательском институте металлорежущих станков), а так же в Московском станкоинсрументальном институте, в техническом университете имени Н. Э. Баумана и в некоторых других организациях. Российские станкостроители освоили выпуск самых разнообразных станков, необходимых для различных отраслей машиностроения. Это станки особо высокой точности, обеспечивающие отклонения долях микрометров, тяжёлые станки для обработки крупных деталей размерами в несколько десятков метров, станки для физико-химических методов обработки, станки-автоматы для контурной программной обработки очень сложных по форме деталей.
Особое развитие в последние десятилетия получило числовое программное управление станками. Микропроцессорные устройства управления превращают станок в станочный модуль, сочетающий гибкость и универсальность с высоким уровнем автоматизации. Станочный модуль способен обеспечивать обработку высокой номенклатуры в автоматическом режиме на основе малолюдной или даже безлюдной технологии. Таким образом, современное станочное оборудование является базой для развития гибкого автоматизированного производства, резко повышающего производительность труда в условиях средне- и мелкосерийного производства.
Использование гибких производственных систем, состоящих из набора станков, манипуляторов, средств контроля, объединённых общим управлением от ЭВМ, даст возможность и в многономенклатурном крупносерийном производстве стимулировать научно-технический прогресс, быстрый и с минимальными затратами переход к новым более совершенным образцам выпускаемой продукции. Переход от использования станков и других технологических машин машинным системам в виде гибких производственных систем технологического оборудования помимо повышения производительности труда коренным образом изменяют весь характер машиностроительного производства. Создаются условия постепенного перехода к трудосберегающему производству при наивысшей степени автоматизации.
Совершенствование современных станков должно обеспечивать повышение скоростей рабочих и вспомогательных движений при соответствующем повышении мощности привода главного движения. Исключительное значение приобретает повышение надёжности станков за счёт насыщения их средствами контроля и измерения, а так же введения в станки систем диагностирования.
Повышение скоростей рабочих и вспомогательных движений связано с дальнейшим совершенствованием привода станка, шпиндельных узлов, тяговых устройств и направляющих прямолинейного движения. Применение композиционных материалов для режущих инструментов позволяет уже сейчас реализовать скорость резания 1,5-2 км/мин, а скорость подачи довести до 20-30 м/мин. Дальнейшее повышение скоростей потребует поиска новых конструкций, использующих иные физические принципы и обеспечивающих высокую работоспособность ответственных станочных узлов.
Применение станочных модулей возможно только при полной автоматизации всех вспомогательных операций за счёт широкого использования манипуляторов и промышленных роботов. Это относится к операциям связанным со сменой заготовок, режущих инструментов, технологической оснастки, с операциями измерения заготовки, инструмента, с операциями дробления и удаления стружки из рабочей зоны станка.
Оснащение станков гибкого автоматизированного производства различными контрольными и измерительными устройствами являются необходимым условием и надёжной работы, особенно в автономном и автоматизированном режиме. В современных станках используют широкий набор средств измерения, иногда очень точных, таких например, как лазерный интерферометр, для сбора текущей информации о состоянии станка, инструмента вспомогательных устройств и для получения и для получения достоверных данных о исправной работе.
Специалисты в области технологии машиностроения, металлорежущих станков и инструментов находятся на одном из самых ответственных участков всего научно-технического прогресса. Задача заключается в том, что бы в результате коренного совершенствования технологии обработки, создания новых металлорежущих станков с микропроцессорным управлением, станочных модулей для гибких производственных систем обеспечить техническое и организационное перевооружение всех отраслей машиностроения и на этой основе обеспечит существенное повышение производительности труда. Для успешного творческого труда инженеры станкостроители должны быть фундаментально подготовлены в области математики, физики, вычислительной техники, иметь фундаментальные знания и навыки по общим инженерным дисциплинам и, наконец, хорошо знать свою будущую специальность. Необходимо ясно представлять общие важнейшие свойства и качества, определяющие технологический уровень металлорежущих станков, с тем, чтобы создавать лучшие образцы и новые модели станков. В настоящее время и в обозримом будущем потребуется создание новых моделей станков, станочных модулей, гибких производственных систем, поэтому будущие специалисты-станкостроители должны владеть основами конструирования станков и их важнейших узлов. Для успешного применения вычислительной техники при конструировании необходимо хорошо знать содержание процесса проектирования всех видов станочного оборудования, владеть методами его моделирования и оптимизации. Современный станок органически соединил технологическую машину для решения размерной обработки с управляющей вычислительной машиной на основе микропроцессора. Поэтому специалист-станкостроитель должен хорошо понимать принципы числового программного управления станками, владеть навыками подготовки и контроля управляющих программ. Он должен знать устройства микропроцессорных средств управления, основные их характеристики и возможности применительно к станочному оборудованию.
Классификация станков
Основные определения
Металлообрабатывающий станок – машина для размерной обработки заготовок в основном путём снятия стружки. Кроме металлических заготовок на станках обрабатывают так же детали из других материалов. К станкам относят и технологическое оборудование, использующее для обработки электрофизические и электрохимические методы, сфокусированный электронный или лазерный луч, поверхностное пластическое деформирование и некоторые другие виды обработки.
Помимо основной рабочей операции, связанной с изменением формы и размеров заготовки, на станке необходимо осуществлять и вспомогательные операции для смены заготовок, их зажима, измерения, операции по смене режущего инструмента, контроля его состояния и состояния всего станка.
Собственно станок подразделяется на несколько важнейших частей, обычно называемых узлами.
Г
лавный
привод (1)
станка сообщает движение инструменту
или заготовке для осуществления процесса
резания с соответствующей скоростью.
У подавляющего большинства станков
главный привод сообщает вращательное
движение шпинделю, в котором закреплён
режущий инструмент или заготовка.
Привод подачи (3) необходим для перемещения инструмента относительно заготовки (или наоборот) для формирования обрабатываемой поверхности. У подавляющего большинства станков привод подачи сообщает узлу станка прямолинейное движение. Сочетанием нескольких прямолинейных, а иногда и вращательных движений можно реализовать любую пространственную траекторию.
Привод позиционирования необходим во многих станках для перемещения того или иного узла станка из некоторой исходной позиции в другую заданную позицию, например, при последовательной обработке нескольких отверстий или нескольких параллельных плоскостей на одной и той же заготовке. Во многих современных станках с числовым программным управлением (ЧПУ) функции приводов подачи и позиционирования выполняет один общий привод.
Несущая система (2) станка состоит из последовательного набора соединённых между собой базовых деталей. Соединения могут быть неподвижными (стыки) или подвижными (направляющие). Несущая система обеспечивает правильность взаимного расположения режущего инструмента и заготовок под воздействием силовых и температурных факторов.
Манипулирующие устройства необходимы для автоматизации различных вспомогательных движений в станке, для смены заготовок, их зажима, перемещения или поворота, смены режущих инструментов, удаления стружки и т.п. Современный многооперационный станок имеет набор манипуляторов транспортёров, поворотных устройств, а в некоторых случаях обслуживается универсальным манипулятором с программным управлением (промышленным роботом).
Контрольные и измерительные устройства необходимы в станке для автоматизации и наблюдения за правильностью его работы. С помощью них контролируют состояние наиболее ответственных частей станка, работоспособность режущего инструмента, измеряют заготовки и изделие. При достаточно высоком уровне автоматизации результаты контроля измерения поступают в управляющее устройство, а оттуда в виде управляющих сигналов корректируют положение узлов станка.
Устройство управления может быть с ручным обслуживанием оператором, с механической системой управления или с ЧПУ. В настоящее время происходит широкое внедрение микропроцессорных устройств ЧПУ для управления всеми видами станочного оборудования.