- •1.Законы геометрической оптики. Абсолютный и относительный показатели преломления. Явление полного внутреннего отражения.
- •2.Электромагнитная теория света.
- •3. Интерференция света. Расчет интерференционной картины от двух когерентных источников.
- •4. Интерференция света в тонких плёнках
- •5.Кольца Ньютона.
- •6. Интерферометры. Интерферометрия.
- •7.Дифракция. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3.8. Дифракция света
- •8. Дифракция Френеля от круглого отверстия и от диска.
- •9. Дифракция от щели.
- •10. Дифракционная решетка и ее характеристики.
- •11. Дифракция рентгеновских лучей. Рентгеноструктурный анализ.
- •12. Поглощение и рассеяние света.
- •13. Дисперсия света. Нормальная и аномальная дисперсии. Элементарная теория дисперсии света.
- •Электронная теория дисперсии светя
- •14.Эффект Доплера и его применение.
- •15. Естественный и поляризованный свет Естественный и поляризованный свет
- •16.Поляризация света при отражении и преломлении от границы раздела двух сред. Закон Брюстера
- •17.Явление двойного лучепреломления. Поляризационные приборы.
- •18. Искусственная оптическая анизотропия. Вращение плоскости полярязации.
- •19.Тепловое излучение. Основные понятия и определения. Модель абсолютного черного тела.
- •20.Закон Киргофа.Стефана-Больцмана,смещение Винаю
- •21.Формула Рэеля-Джинса и ультрофиолетовая катастрофа.Квантовая гипотеза и формула Планка.
- •22. Внешний фотоэффект.
- •23. Масса и импульс фотона.Давленеи света.Квантовое и волновое объйяснение давления света.
- •24. Эффект Комптона.
- •25. Волновые свойства микрочастиц. Гипотеза де Бройля.
- •26. Соотношение неопределенностей Гейзанберга.
- •27.Временное и стационарное уравнение Шредингера. Волновая функция и ее свойства.
- •28. Частица в одномерной яме с абсолютно непроицаемыми стенками.
- •29. Квантовый гармонический осцилятор.
- •30. Прохождение частицы через одномерный потенциальный барьер.
- •31.Вынужденное излучение. Лазеры.
- •§ 233. Оптические квантовые генераторы (лазеры)
- •32.Ядерная модель атома. Опыты Резерфорда.
- •33. Теория Бора. Модель атома Бора.
- •34. Квантово-мех модель атома водорода. Квант числа.
- •35.Опыт Эйнштейна и де Гааза. Спин. Полный момент импульса электрона.
- •36. Сложение моментов. Результирующий момент многоэлектронной системы.
- •37.Магнитный момент атома. Атом в механическом поле. Опыты Штерна и Герлаха
- •38. Принцип Паули. Построение периодической системы элементов.
- •39. Рентгеновские спектры. Закон Мози.
- •40. Двухатомные молекулы. Схема энергетических уровней. Комбинационное рассеяние света.
- •Теплоемкость твердых тел
- •Понятие о квантовой теории теплоемкости. Фононы
- •Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •Спин ядра и его магнитный момент
- •Дефект массы и энергия связи ядра
- •Ядерные силы. Модели ядра
- •Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •. Закономерности -распада
- •Ядерные реакции и их основные типы
- •Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
24. Эффект Комптона.
Эффект Комптона – упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и γ – излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны.
Разность
Δλ
= λ' - λ
(комптоновскип сдвиг) не
зависит от длины волны λ
падающего
излучения и от природы рассеивающего
вещества,
а зависит только от угла θ
между
направлениями рассеянного
и первичного излучений:
,
(68)
где λc = h/(moc) – комптоновская длина волны электрона [т0 – масса покоя электрона, λc = 2,42631058·10-12 м].
У
Рис. 59
меньшение энергии фотона означает увеличение длины волны рассеянного излучения. При каждом таком столкновении выполняются законы:закон сохранения импульса p = p' + p
или,
используя теорему косинусов,
(69)
закон сохранения энергии W0 + E = W + E', (70)
где
p
= hv/c,
p'
= hv'/c,
Wo
= moc2
–
энергия электрона до столкновения
(m0
– масса покоя электрона), E
=
hv
– энергия налетающего фотона,
– энергия электрона после столкновения
E'
= hv'
– энергия рассеянного фотона
25. Волновые свойства микрочастиц. Гипотеза де Бройля.
,
(72)
где А – постоянная амплитуда волны, k – волновой вектор (его направление совпадает с направлением распространения волны, а модуль равен 2π/λ).
Согласно
корпускулярно-волновому дуализму
материи,
ω
=
E/ħ
и
р
= ħk.
Учитывая эти соотношения и выражение
(72), видим, что с движением
частицы, имеющей определенные энергию
и импульс, связывается волна вида
,
называемая плоской волной де Бройля.
Основные уравнения, связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами [частота (длина волны)]: E = hv, p = hv/c.
Свет, обладая одновременно корпускулярно-волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света И Наоборот
Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей распространения света.
ГИПОТЕЗА ДЕ БРОЙЛЯ
Луи де Бройль в 1924 г. постулировал, что корпускулярно-волновой дуализм имеет универсальный характер и распространяется не только на световые корпускулы (фотоны), но и на все частицы материи: частицы вещества (в частности, электроны) наряду с корпускулярными обладают также и волновыми свойствами. Количественные соотношения, связывающие корпускулярные (энергия и импульс) и волновые [частота (длина волны)] характеристики микрочастиц, такие же, как для фотона:
E = hv = ħω, p = h/λ = ħk, где k = 2π/λ – волновое число, а ħ = h/2π – постоянная Планка.
Длина
волны, связанная с частицей,
,
(71)
где р – импульс частицы, λ называется длиной волны де Бройля.
Для
нерелятивистской частицы длина волны
де Бройля
,
где
т0
–
масса покоя частицы. Если Т
–
кинетическая энергия частицы
[Т=р2/(2т)],
то
(71)
Для релятивистской частицы длина волны де Бройля
(в
данном случае
).
Выразив с помощью соотношения
импульс
частицы р
через
ее полную энергию
Е,
найдем
Если Т – кинетическая энергия частицы, то Е = Т + т0с2.
Тогда
.
Гипотеза де-Бройля была блестяще подтверждена экспериментально. Дэвиссон и Джермер обнаружили, что пучок электронов, рассеивающийся от кристаллической пластинки, дает дифракционную картину. Томсон и независимо от него Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу.
Электрон при ударе о фотопластинку оказывает на нее такое же действие, как и фотон. Полученная таким способом электронограмма золота (рис. 61) сопоставлена с полученной в аналогичных условиях рентгенограммой алюминия (рис. 62). Сходство обеих картин поразительно.
Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что мы имеем дело с универсальным явлением – общим свойством материи Простейшей волной с частотой ω и волновым вектором k является плоская монохроматическая волна.
