
- •1)Биология - совокупность наук о жизни, о живой природе (греч. Bios - жизнь, logos - учение).
- •2)Сущность жизни, уровни организации живого. Фундаментальные свойства живого, клетка - элементарная биологическая единица
- •3) Клеточная теория: основные этапы развития
- •6)Клетка как открытая система: Потоки вещества, энергии и информации в клетке.
- •7) Элементарный химический состав живого. Вода и низкомолекулярные соединения.
- •9)Строение и биологические функции липидов клетки.
- •12) Строение и биологические функции плазматической мембраны. Реснички и жгутики, микроворсинки.
- •14)Клетка как целостная структура. Коллоидная система цитоплазмы (гиалоплазма).
- •16)Одномембранные органеллы клетки: канальцевая и вакуолярная система клетки — эпс, Комплекс Гольджи, диктиосомы, лизосомы, микротельца, пероксисомы. Их строение и функции.
- •17) Трубчатые структуры клетки: центриоли, базальные тела, жгутики, реснички, элементы цитоскелета.
- •19)Транспорт через плазматическую мембрану: активный и пассивный, их виды, экзо- и эндоцитоз.
- •26)Строение хромосомы и динамика ее структуры в клеточном цикле
- •27)Политенные хромосомы, хромосомы типа ламповых щеток, их строение и функциональное значение.
- •29)Аэробное дыхание и брожение, их биологическое значение
- •30) Митоз - тип деления клетки, при котором образуются дочерние клетки с таким же набором хромосом, как и у материнской клетки.
- •31)Прямое деление клеток: амитоз. К-митоз, эндомитоз, политения.
- •34) Бесполое размножение, его виды и биологическое значение.
- •3. Вегетативная форма размножения
- •36)Нерегулярные типы полового размножения.
- •39)Морфологическое строение хромосом. Гетерохроматин и эухроматин. Кариотип.
- •40Э)Методы идентификации хромосом. Аутосомы, половых хромосомы.
- •Оогенез и оплодотворение (на примере человека)
- •41)Менделирующие и мультифакторные признаки человека.
- •42) Наследование признаков при полном и неполном доминировании и кодоминировании.
- •44) Законы Менделя.
- •Первый закон Менделя (правило единообразия).
- •Третий закон Менделя. Правило независимого наследования.
- •46)Множественный аллелизм. Наследование групп крови у человека в системе ав0.
- •47) Статистический характер расщепления. Использование критерия хи-квадрат в гибридологическом анализе. Правила вероятностей условий Менделирования.
- •49) Наследование признаков при взаимодействии генов по типу полимерии.
- •51)Хромосомная теория наследственности. Законы наследования признаков, установленные т. Морганом.
- •52) Сцепленное наследование. Закон т. Моргана. Группы сцепления. Методы генетического картирования. Соматическая гибридизация, её значение в установлении групп сцепления человека.
- •54)Типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
- •Компоненты нуклеотидов днк и рнк
- •Три вида рнк
- •56)Типы рнк и их роль в синтезе белка клетки. Постранскрипционные процессы.
- •57) Генетический код. Основные свойства генетического кода. Расшифровка генетического кода в процессе синтеза белка в клетке.
- •62) Цитоплазматические гены и их роль в цитоплазматической наследственности.
- •64) Использование генетической информации в процессе жизнедеятельности: трансляция, этапы биосинтеза белка.
- •65)Организация генома прокариот
- •Организация генома прокариот(на примере кишечной палочки)
- •66)Особенности экспрессии у прокариот.
- •2. Постэмбриональное развитие
- •72) Индуцированный мутагенез и понятие о мутагенах.
- •74)Множественный аллелизм.
- •75)Модификационная (фенотипическая) изменчивость
- •Норма реакции
- •Вариационный ряд
- •Вариационная кривая
- •76)Генетический полиморфизм. Мутации и их роль в развитии заболеваний.
- •77) Роль наследственности и среды в формировании нормального и патологически измененного фенотипа человека. Наследственные болезни: хромосомные, генные, болезни с наследственной предрасположенностью.
- •81) Генетика человека. Близнецовый метод, сущность и значение.
- •82) Генетическаяструктура панмиктической популяции. Закон Харди-Вайнберга.
- •2·P·q Aa · Nобщ – ожидаемая абсолютная частота (численность) гетерозигот Аа
- •Определение кариотипа
- •86) Гаметогенез. Сперматогенез. Оогенез, особенности строения половых клеток.
- •87) Генетическая сущность оплодотворения. Нарушения оплодотворения, нерегулярные типы оплодотворения.
- •89) Дробление. Нарушения дробления
- •90) Оплодотворение и ооплазматическая сегрегация
- •91) Дифференциация и интеграция в развитии. Аномалии и пороки развития.
- •92) Роль наследственности и среды в онтогенезе.
- •95) Старение представляет собой всеобъемлющий процесс, охватывающий все уровни структурной организации особи —от макромолекулярного до организменного.
- •96) Регенерация органов и тканей, физиологическая и репаративная регенерация.
- •Аллофенными называют химерные организмы, содержащие разные ткани, произошедшие из клеток, полученных от разных родителей
- •102) Иммунологическая совместимость. Резус конфликт.
- •106)Тип Простейшие. Класс споровики. Значение для медицины.
- •107) Тип простейшие. Класс Инфузории. Значение для медицины.
- •109) Тип простейшие. Класс Инфузории
- •110) Тип плоские черви. Класс Сосальщики
- •Кровяная двуустка Shistosomahaemotobium
- •Ланцетовидный сосальщик (Dicrocoelium lanceoiatuni)
- •111) Овогельминтоскопия. Методы капрологического анализа.
- •112) Тип членистоногие. Класс паукообразные. Значение для медицины.
- •114) Сущность эволюции. Микро - и макроэволюция. Характеристика механизмов и основных результатов.
- •Биологический вид и его определение.
- •Микроэволюция
- •Макроэволюция
- •115) Популяция - элементарная эволюционная единица
- •116) Элементарные эволюционные факторы.
- •119) Естественный отбор. Специфика действия естественного отбора в человеческих популяциях.
- •Формы естественного отбора.
- •Специфика в человеческих популяциях:
- •1.Гены, вовлеченные в защиту от патогенов
- •2. Гены, отвечающие за способность усваивать пищу
- •3. Гены, отвечающие за непереносимость алкоголя
- •4. Гены, определяющие цвет кожи
- •121) Происхождение человека.
29)Аэробное дыхание и брожение, их биологическое значение
При аэробном дыхании на каждую окисленную молекулу глюкозы образуется 38 молекул АТФ.
С6Н1206 + 602-----------> 6С02 + 6Н20 + 38АТФ
Общее количество энергии, высвобождаемой при полном окислении глюкозы, составляет 2880 кДж на 1 моль.
В одном моле АТФ заключено 30,6 кДж. В 38 молях АТФ заключено 30,6 х38 = 1162,8 кДж.
Таким образом, эффективность превращения энергии при аэробном дыхании составляет: 1162,8/2880 = 40,4%.
При аэробном дыхании образующаяся в процессе гликолиза пировиноградная кислота в конечном итоге полностью окисляется кислородом до СО2 и воды. В первой фазе пировиноградная кислота расщепляется с образованием СO2 и водорода. Этот процесс протекает в матриксе митохондрий и включает в себя последовательность реакций, называемую циклом Кребса. Во второй фазе отщепившийся водород через ряд окислительно-восстановительных реакций — в так называемой дыхательной цепи — окисляется в конечном счете молекулярным кислородом до воды. Это происходит на так называемых кристах (гребневидных складках внутренней мембраны митохондрий).+
Брожение — это внутренний окислительно-восстановительный процесс, при котором акцептором электронов служит органическая молекула и суммарная степень окисления образующихся продуктов, отличается от степени окисления сбраживаемого вещества.
30) Митоз - тип деления клетки, при котором образуются дочерние клетки с таким же набором хромосом, как и у материнской клетки.
Фаза |
Процессы |
Профаза |
1. Хромосомы спирализуются, в результате чего становятся видимыми. 2. Каждая хромосома состоит из двух хроматид. 3. Ядерная мембрана и ядрышко разрушаются. Центриоль удваивается. |
Метафаза |
4. Хромосомы располагаются по экватору клетки. Образуется веретено деления. |
Анафаза |
5. Центромеры делятся, и хроматиды (дочерние хромосомы) расходятся к полюсам клетки с помощью нитей веретена деления. |
Телофаза |
6. Вокруг разошедшихся хромосом образуется новая ядерная мембрана. 7. Исчезает веретено деления. Образуются две дочерние клетки. |
Значение митоза: обеспечивает равномерное распределение хромосом между дочерними клетками.
С начала 60-х гг. появились новые взгляды на значение для старения и продолжительности жизни закономерностей клеточной пролиферации. На основании подсчета числа делений фибробластов, высеваемых в культуру ткани от эмбриона человека и от людей в возрасте 20 лет и выше, было сделано заключение о пределе клеточных делений (лимит Хейфлика), которому соответствует видовая длительность жизни. Показано, что фибробласты мыши способны удваивать свою численность 14—28 раз, цыпленка —15—35, человека—40—60, черепахи—72—114 раз. Проверка результатов, о которых идет речь, выявила, что представление об ограниченности числа клеточных делений в индивидуальном развитии является неточным.
В опухолях атипичные клетки делятся митотическим способом. В результате деления образуются идентичные измененной клетки. Деление происходит многократно. В итоге опухоль быстро растет.
Жизненный цикл клетки. Интерфаза. Митоз. Жизненный цикл клетки – это период ее жизни от деления до деления. Клетки размножаются путем удвоения своего содержимого с последующим делением пополам. Клеточное деление лежит в основе роста, развития и регенерации тканей многоклеточного организма. Клеточный цикл подразделяют на интерфазу, сопровождающуюся точным копированием и распределением генетического материала и митоз – собственно деление клетки после удвоения других клеточных компонентов. Длительность клеточных циклов у разных видов, в разных тканях и на разных стадиях широко варьирует от одного часа (у эмбриона) до года (в клетках печени взрослого человека).
Интерфаза – период между двумя делениями. В этот период клетка готовится к делению. Удваивается количество ДНК в хромосомах. Удваивается количество других органоидов, синтезируются белки, причем наиболее активно те из них, которые образуют веретено деления, происходит рост клетки.
К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.
Митоз – это форма деления клеточного ядра. Следовательно, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имелародительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное. Митоз состоит из нескольких последовательных фаз.
Профаза. К разным полюсам клетки расходятся удвоенные центриоли. От них к центромерам хромосом протягиваются микротрубочки, образующие веретено деления. Хромосомы утолщены и каждая хромосома состоит из двух хроматид.
Метафаза. В этой фазе хорошо видны хромосомы, состоящие из двух хроматид. Они выстраиваются по экватору клетки, образуя метафазную пластинку.
Анафаза. Хроматиды расходятся к полюсам клетки с одинаковой скоростью. Микротрубочки укорачиваются.
Телофаза. Дочерние хроматиды подходят к полюсам клетки. Микротрубочки исчезают. Хромосомы деспирализуются и снова приобретают нитевидную форму. Формируются ядерная оболочка, ядрышко, рибосомы.
Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.
В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.
В опухолевых клетках ход митоза нарушается.