- •1. Механика. Механическое движение. Разделы механики. Основные модели механики.
- •2. Ускорение материальной точки и его составляющие.
- •3.Законы равномерного и равнопеременного поступательного движения.
- •4. Движение материальной точки по окружности. Угловая скорость, угловое ускорение. Законы равномерного и равнопеременного вращательного движения.
- •5. Динамика. Инерция.Инерциальные и неинерциальные системы отсчёта. Первый закон Ньютона. Масса, сила. 2-ой закон Ньютона. Импульс, общая форма второго закона динамики.
- •7. Механическая система. Замкнутая система тел. Импульс механической системы. Закон сохранения импульса. Центр масс и центр тяжести механической системы. Закон движения центра масс.
- •8. Энергия, работа, мощность. Кинетическая и потенциальная энергия. Закон сохранения энергии. Графическое представление энергии.
- •9. Применение закона сохранения в механике на примере удара абсолютно упругих тел.
- •10. Применение закона сохранения в механике на примере удара абсолютно неупругих тел.
- •11. Момент инерции мат.Точки и твердого тела. Вычисление моментов инерции сплошного цилиндра, полого цилиндра, шара, стержня.
- •12. Теорема Штейнера-Гюйгенса. Кинетическая энергия вращающегося тела.
- •13. Момент силы. Уравнение динамики вращательного движения твердого тела.
- •14. Момент импульса. Уравнение момента. Закон сохранения момента импульса.
- •15. Молекулярная физика. Основные положения молекулярно-кинетической теории газов. Основное уравнение мкт идеальных газов.
- •16. Опытные законы идеального газа. Уравнение Клапейрона-Менделеева.
- •17.Закон распределения Максвелла для распределения молекул идеального газа по скоростям теплового движения. Наивероятнейшая скорость движения молекул.
- •18.Среднеарифметическая скорость движения молекул. Средняя кинетическая энергия поступательного движения одной молекулы идеального газа.
- •19. Барометрическая формула. Распределение Больцмана.
- •20. Опытное обоснование мкт (опыт Штерна, броуновское движение, опыт Ламмерт, опытное определение постоянной Авогадро).
- •21. Термодинамика. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.
- •22. Пнт.Работа газа при изменении объема.
- •23. Теплоёмкости. Классическая теория теплоёмкостей. Закон Джоуля. Ур-е Роберта Майера.
- •24. Применение пнт к изопроцессам.
- •25.Адиабатный процесс. Уравнение Пуассона. Работа при адиабатном процессе.
- •26.Процессы: равновесные и неравновесные, обратимые и необратимые. Круговой процесс(цикл). Работа цикла. Термический коэффициент полезного действия. Внт. Цикл Карно и его кпд для идеального газа.
- •27. Энтропия. Физический смысл энтропии. Изменение энтропии при изопроцессах.
- •28.Свойства энтропии. Термодинамическая диаграмма t-s и ее применение.
- •29. Среднее число столкновений, средняя длина свободного пробега.
- •30. Диффузия в газах. Соотношения между коэффициентами переноса.
- •3 S 1. Вязкость газов.
- •32.Теплопроводность в газах.
- •34. Вектор электрического смещения. Поток вектора электрического смещения. Теорема Гаусса для электростатического поля в вакууме.
- •35. Применение теоремы Гаусса к вычислению простейших полей.
- •36. Циркуляция вектора напряженности электрического поля.
- •38. Напряжённость как градиент потенциала. Эквипотенциальные поверхности
- •39.Потенциал в простейших электрических полях. Потенциал поля диполя.
- •40. Электроёмкость удельного проводника. Фарад. Конденсаторы. Электроёмкость конденсаторов различной формы. Соединение конденсаторов.
- •41. Энергия уединенного заряженного проводника. Энергия заряженного конденсатора. Энергия электростатического поля.
- •43. Сторонние силы. Электродвижущая сила (эдс) и напряжение.
- •46. Разветвленные цепи. Правила Кирхгофа.
- •47.Работа и мощность электрического тока. Тепловое действие тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
18.Среднеарифметическая скорость движения молекул. Средняя кинетическая энергия поступательного движения одной молекулы идеального газа.
Средняя арифметическая скорость
Имеет и другой вид:
Средняя кинетическая энергия поступательного движения одной молекулы идеального газа
.
Отсюда
следует, что
=0
при T = 0 K – прекращается движение
молекул газа.
Молекулярно-кинетическое толкование температуры: термодинамическая температура – есть мера средней кинетической энергии поступательного движения молекул газа.
19. Барометрическая формула. Распределение Больцмана.
Пусть мы находимся на уровне моря(нулевой уровень). -давление на этой поверхности.
П
ри
:
.
Предположим, что площадь основания
цилиндра ровна 1.
для
.
,
т.к.
.
Если
,
то
,
,
,
,
,
,
,
-барометрическая
формула,
,
,
-распределение
Больцмана.
П
ри
,
(Т-повышается)
.
,
(*).
Величина
-потенциальная
энергия, кот. обладает молекула на данной
высоте. Тогда
,
-доля молекул для высоты
с энергией
.
Существ. в атмосфере
распределения молекул воздуха по высоте
устанавливается в результате действия
двух факторов: 1) под действием силы
тяжести молекула стремится опустится
на поверхность Земли. 2) Тепловое движение,
характеризуемое величиной
,
стремится распределить молекулы
равномерно по высотам.
Формула (*) определяет распределение молекул по высоте и выражает также распределение их по значениям потенц. энергии справедливо не только для поля силы тяжести, но и для любого поля потенц. сил.
20. Опытное обоснование мкт (опыт Штерна, броуновское движение, опыт Ламмерт, опытное определение постоянной Авогадро).
Эксперименты, подтверждающие молекулярно-кинетическую теорию.
1. Броуновское движение. Любые частицы малых размеров, взвешенные в газе или жидкости, совершают сложное зигзагообразное движение.
Броуновское движение взвешенных частиц вызывается ударами молекул среды, в которой частицы взвешены. Подтверждение гипотезы о хаотическом тепловом движении молекул.
2. Опыт Штерна. Два коаксиальных цилиндра синхронно
вращаются в вакууме.
А
томы
серебра, испарясь с проволоки,
расположенной вдоль оси внутреннего
цилиндра, вылетают через щель и оседают на внутренней стенке наружного цилиндра. Исследуя толщину осажденного слоя, можно оценить распределение молекул по скоростям, которое соответствует
максвелловскому распределению.
3. Опыт Ламмерта. Между источником молекулярного пучка и приемником синхронно вращаются два диска с
р
адиальными
щелями.
Из числа молекул, пролетевших через первую
щель, пролетят через второй диск только те, которые подлетят к нему в тот момент, когда на пути пучка встанет прорезь во втором диске. Изменяя угловую скорость вращения, можно исследовать распределение молекул по скоростям.
4. Опытное определение постоянной Авогадро:
- концентрация на
различных уровнях
Тогда масса частицы равна
Тогда масса жидкости равна
Следовательно,
Число Авогадро
