
- •Предел числовой последовательности. Предел функции.
- •Бесконечные пределы. Односторонние пределы.
- •Бесконечно малые и бесконечно большие функции. Их свойства.
- •Сравнение бесконечно малых функций.
- •Основные теоремы о пределах.
- •Признаки существования предела.
- •Непрерывность функции. Свойства функций, непрерывных на множестве.
- •Точки разрыва функции.
- •Функцию можно доопределить до
- •Производная. Геометрический смысл производной.
- •Связь между непрерывностью и дифференцируемостью функции.
- •Свойства производных.
- •Дифференциал. Связь между производной и дифференциалом. Дифференциал
- •Геометрический смысл дифференциала. Свойства дифференциала.
- •Применение дифференциала к приближенным вычислениям.
- •Производные высших порядков. Правило Лопиталя.
- •Возрастание и убывание функций.
- •Экстремумы функции.
- •Выпуклость графика функции. Точки перегиба графика.
- •Асимптоты графика функции.
- •Первообразная. Неопределенный интеграл.
- •Свойства неопределенного интеграла.
- •Интегрирование по частям и метод замены переменной в неопределенном интеграле. Метод замены переменной в неопределенном интеграле
- •Определенный интеграл. Геометрический смысл определенного интеграла.
- •Свойства определенного интеграла. Вычисление определенного интеграла. Свойства определенного интеграла
- •Интегрирование по частям и метод замены переменной в определенном интеграле.
- •Приложения определенного интеграла.
- •Несобственные интегралы первого рода.
- •Несобственные интегралы второго рода.
- •Линейное векторное пространство.
- •30. Скалярное произведение. Длина вектора. Угол между векторами. Коллинеарные и ортогональные векторы.
- •Системы векторов. Линейная зависимость векторов. Системы векторов
- •Ранг и базис системы векторов. Ранг и базис n‑мерного линейного векторного пространства.
- •Матрицы и их виды. Операции над матрицами. Матрицы
- •Определители. Свойства определителей.
- •Обратная матрица. Нахождение обратной матрицы. Обратная матрица
- •Ранг матрицы.
- •Системы линейных уравнений. Матричная форма записи системы. Системы линейных уравнений
- •Условие совместности.
- •Решение системы с помощью формул Крамера. Решение системы с помощью обратной матрицы.
- •Решение произвольных систем линейных неоднородных уравнений. Метод и таблицы Гаусса.
- •Нахождение неотрицательных базисных решений системы.
- •Общее уравнение прямой. Уравнение прямой с угловым коэффициентом.
- •Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки.
- •Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых.
- •Уравнение плоскости в пространстве.
- •Уравнение прямой в пространстве.
- •Эллипс. Окружность. Эллипс
- •Гипербола. Парабола.
- •Решение систем линейных неравенств.
- •Понятие функции многих переменных. Непрерывность функции многих переменных. Понятие функции многих переменных
- •Частные производные функции многих переменных.
- •Полный дифференциал.
- •Производная по направлению.
- •Градиент функции многих переменных.
- •Частные производные высших порядков.
- •Экстремумы функций многих переменных. Глобальный максимум.
Сравнение бесконечно малых функций.
Пусть
б.м.
функции при
.
Предположим, что существует предел их
отношения и он равен l.
.
Тогда если:
1) l=1, то функции и называются эквивалентными б.м.;
2) l - число, l0, то функции и называются б.м. одинакового порядка;
3) l=0, то функция называется б.м. более высокого порядка, чем ;
4) l= , то функция называется б.м. более высокого порядка, чем .
Пример
1.
,
,
рис
5
,
и - эквивалентные б.м. функции.
Пример 2. =х3,
=х,
,
,
рис
6
- б.м. функция более высокого порядка, чем .
Основные теоремы о пределах.
Теорема 1. (о предельном переходе в равенстве) Если две функции принимают одинаковые значения в окрестности некоторой точки, то их пределы в этой точке совпадают.
.
Теорема 2. (о предельном переходе в неравенстве) Если значения функции f(x) в окрестности некоторой точки не превосходят соответствующих значений функции g(x) , то предел функции f(x) в этой точке не превосходит предела функции g(x).
.
Теорема 3. Предел постоянной равен самой постоянной.
.
Доказательство. f(x)=с, докажем,
что
.
Возьмем произвольное >0. В качестве можно взять любое
положительное число. Тогда при
.
Теорема 4. Функция не может иметь двух различных пределов в
одной точке.
Доказательство. Предположим противное. Пусть
и
.
По теореме о связи предела и бесконечно малой функции:
f(x)-A= - б.м. при ,
f(x)-B= - б.м. при .
Вычитая
эти равенства, получим:
B-A= - .
Переходя к пределам в обеих частях равенства при , имеем:
B-A=0, т.е. B=A. Получаем противоречие, доказывающее теорему.
Теорема 5. Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.
.
Доказательство. Пусть
,
,
.
Тогда, по теореме о связи предела и б.м. функции:
где
-
б.м. при
.
Сложим алгебраически эти равенства:
f(x)+g(x)-h(x)-(А+В-С)=
,
где
б.м.
при
.
По теореме о связи предела и б.м. функции:
А+В-С=
.
Теорема 6. Если каждый из сомножителей произведения конечного числа функций имеет пределпри , то и произведение имеет предел при , причем предел произведения равен произведению пределов.
.
Следствие. Постоянный множитель можно выносить за знак предела.
.
Теорема 7. Если функции f(x) и g(x) имеют предел при ,
причем
,
то и их частное имеет предел при
,
причем предел частного равен частному
пределов.
,
.
Признаки существования предела.
Теорема
1 (теорема
о двух милиционерах). Если
функция y=f(x) в
некоторой окрестности точкиа заключена
между двумя функциями
и
,
т.е. выполняется неравенство
х,
причем эти функции имеют одинаковый
предел при
,
то существует предел
функции y=f(x) при
,
равный этому же значению.
,
=>
.
рис
7
Теорема 2. Если функция y=f(x) монотонно возрастет (убывает) в некоторой окрестности точки аи ограничена сверху (снизу), то она имеет предел при .