- •Задачи и интерфейсы Unix-подобных систем.
- •2.Структура ядра ос Linux.
- •3. Процессы в ос Linux. Общие понятия.
- •4. Процессы в ос Linux. Этапы создания процесса.
- •5. Взаимодействие процессов в ос Linux.
- •6. Реализация потоков в ос Linux.
- •7. Планирование в ос Linux.
- •8.Загрузка в ос Linux
- •13.Подкачка в ос Linux.
- •14.Алгоритм замещения страниц в ос Linux.
- •15.Ввод-вывод в ос Linux. Общие понятия.
- •17. Файловые системы в ос Linux. Общие понятия.
- •18. Файловые системы в ос Linux. Файловая система Ext2.
- •19. Файловые системы в ос Linux. Файловая система Ext3.
- •20. Файловые системы в ос Linux. Файловая система nfs.
- •21.Архитектура ос windows nt/2000/xp
- •22. Архитектура ос windows vista
- •23.Структура пользовательского режима. Программный интерфейс Win32 api.
- •24.Реестр ос Windows Vista.
- •25. Реализация объектов в oc windows Vista. Структура объектов.
- •26. Реализация объектов в oc windows Vista. Типы объектов.
- •27. Реализация объектов в oc windows Vista. Пространство имён.
- •Структура пространства имен
- •28. Задания, процессы, потоки, волокна в oc windows Vista.
- •29. Межпроцессное взаимодействие в oc windows Vista.
- •30. Реализация процессов и потоков в oc windows Vista.
- •31. Планирование в oc windows Vista. Условия вызова планировщика.
- •32. Планирование в oc windows Vista. Система приоритетов.
- •33. Планирование в oc windows Vista. Условия изменения приоритетов.
- •34. Технология dll. Структура dll-библиотеки. Наиболее важные dll-библиотеки.
- •35. Технология dll. Преимущества и недостатки dll. Win32 и dll
- •38. Конфигурация виртуального адресного пространства для пользовательского
- •39. Реализация, поддержка, особенности виртуальной памяти в oc windows Vista.
- •40. Реализация управления памятью в oc windows Vista. Обработка страничных
- •41. Алгоритм замещения страниц в oc windows Vista.
- •42. Управление физической памятью в oc windows Vista.
- •44. Файловая система fat. Загрузочный сектор.
- •45. Файловая система fat. Таблица размещения файлов.
- •46. Файловая система ntfs. Структура тома.
- •47. Файловая система ntfs. Структура главной файловой таблицы mft
- •48. Файловая система ntfs. Файловая запись mft для малого и большого файла.
- •49. Файловая система ntfs. Файловая запись mfTдля малого и большого каталога.
- •50. Файловая система ntfs. Файлы метаданных.
44. Файловая система fat. Загрузочный сектор.
Формат загрузочного сектора зависит от операционной системы и ее версии. Загрузочный сектор является самым первым на логическом диске. Загрузочная запись состоит из двух частей:
1. Блок параметров диска;
2. Программа начальной загрузки ОС;
Первые два байта загрузочной записи – это команда безусловного перехода на системный загрузчик; Далее идет восьми байтовый системный идентификатор (Здесь находится фирма разработчик и версия ОС); Затем следуют параметры диска, а после него - загрузчик ОС;
Блок параметров диска содержит следующую информацию:
1. Размер сектора;
2. Число секторов в кластере;
3. Число зарезервированных секторов;
4. Количество копий FAT;
5. Максимальное количество элементов root;
6. Количество секторов в таблице FAT;
7. Число секторов на дорожке;
8. Метка тома;
9. Имя ФС;
10. Другие параметры;
Загрузочные записи различных операционных систем отличаются обычно структурой блока параметров. В некоторых есть дополнительные поля. Между загрузочным сектором и FAT могут находиться зарезервированные сектора, которые являются служебными для ФС или не используются.
45. Файловая система fat. Таблица размещения файлов.
FAT – карта области данных. Область данных разбивается на кластеры.
Кластер – это один или несколько смежных секторов области данных. С другой стороны, это минимальная адресуемая единица дисковой памяти, выделяемая файлом. Т.е. файл или каталог занимает целое количество кластеров.
Для создания и записи на диск нового файла ОС отводит несколько свободных кластеров диска. Эти кластеры необязательно должны следовать друг за другом. Для каждого файла хранится список всех номеров кластеров, которые предоставлены данному файлу.
Разбиение области данных на кластеры вместо использования секторов позволяет:
- уменьшить размер таблицы FAT:
- уменьшить фрагментацию файлов;
- сокращение длины цепочек фалов;
Однако, слишком большой размер кластеров ведет к неэффективному использованию области данных, особенно в случае, большого количества маленьких файлов. Каждый элемент таблицы FAT соответствует одному кластеру диска и характеризует его состояние:
- свободен
- занят
- сбойный
Если кластер распределен к какому-либо файлу, то соответствующий элемент таблицы FAT содержит номер следующего кластера FAT. Последний кластер файла отмечается числом в диапазоне от 0xff8h до 0xfffh (FAT16) (0xfff8h до 0xffffh (FAT32)). Если кластер является свободным, то он содержит нулевое значение (0х000h(FAT16), 0х0000h(FAT32)). Кластер, непригодный для использования, отмечается числом 0xff7h(FAT16) , 0xfff7h(FAT32). Таким образом, таблица FAT кластеры, принадлежащие одному файлу, связываются в цепочки. Таблица FAT хранится сразу после загрузочной записи логического диска, ее точное расположение описано в специальном поле в загрузочном секторе, она храниться в двух идентичных экземплярах, которые следуют друг за другом и при разрушении первой копии используется вторая.
Поскольку таблица FAT интенсивно используется во время работы системы, то она загружается в ОП и остается там как можно дольше.
Основной недостаток FAT состоит в том, что при создании файла работает следующее правило, выделяется первый свободный кластере, что ведет к фрагментации диска и сложным цепочка файлов. За счет этого происходит замедление работы с файлами.
